Endosome maturation during ER stress relies on the ubiquitin-binding domain of histone deacetylase 6.

IF 2.7 3区 生物学 Q3 CELL BIOLOGY
Molecular Biology of the Cell Pub Date : 2025-10-01 Epub Date: 2025-08-13 DOI:10.1091/mbc.E25-01-0024
Katherine M Piscopo, Brooke Larson, Anna M Christiansen, Jason M Perry, Julie Hollien
{"title":"Endosome maturation during ER stress relies on the ubiquitin-binding domain of histone deacetylase 6.","authors":"Katherine M Piscopo, Brooke Larson, Anna M Christiansen, Jason M Perry, Julie Hollien","doi":"10.1091/mbc.E25-01-0024","DOIUrl":null,"url":null,"abstract":"<p><p>Histone deacetylase 6 (HDAC6) helps cells manage misfolded proteins by transporting ubiquitin (UB)-associated structures toward the microtubule organizing center, where they can be sequestered and degraded by lysosomes. Here, we show that when cells are subjected to acute protein-folding stress in the endoplasmic reticulum (ER), HDAC6 depletion results in the appearance of enlarged endosomes that are highly decorated with UB and colocalize with both early and late endosome markers. The C-terminal UB-binding domain and adjacent disordered regions of HDAC6 are necessary and sufficient to rescue this endosomal phenotype in cells lacking endogenous HDAC6. HDAC6 deficiency does not appear to prevent the recruitment of endosomal sorting complexes required for transport (ESCRT), which coordinate endosome maturation. However, overexpression of HDAC6 can reverse endosome phenotypes associated with the depletion of the early ESCRT factor HRS. We speculate that HDAC6 facilitates the packaging and processing of endosomal cargo when the endomembrane system is under stress.</p>","PeriodicalId":18735,"journal":{"name":"Molecular Biology of the Cell","volume":" ","pages":"ar120"},"PeriodicalIF":2.7000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12444907/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biology of the Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1091/mbc.E25-01-0024","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/13 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Histone deacetylase 6 (HDAC6) helps cells manage misfolded proteins by transporting ubiquitin (UB)-associated structures toward the microtubule organizing center, where they can be sequestered and degraded by lysosomes. Here, we show that when cells are subjected to acute protein-folding stress in the endoplasmic reticulum (ER), HDAC6 depletion results in the appearance of enlarged endosomes that are highly decorated with UB and colocalize with both early and late endosome markers. The C-terminal UB-binding domain and adjacent disordered regions of HDAC6 are necessary and sufficient to rescue this endosomal phenotype in cells lacking endogenous HDAC6. HDAC6 deficiency does not appear to prevent the recruitment of endosomal sorting complexes required for transport (ESCRT), which coordinate endosome maturation. However, overexpression of HDAC6 can reverse endosome phenotypes associated with the depletion of the early ESCRT factor HRS. We speculate that HDAC6 facilitates the packaging and processing of endosomal cargo when the endomembrane system is under stress.

内质网应激期间内核体的成熟依赖于组蛋白去乙酰化酶6的泛素结合域。
组蛋白去乙酰化酶6 (HDAC6)通过将泛素相关结构运输到微管组织中心,帮助细胞管理错误折叠的蛋白质,在微管组织中心,泛素相关结构可以被溶酶体隔离和降解。当细胞在内质网(ER)中受到急性蛋白质折叠应激时,HDAC6耗损导致内体增大,这些内体被泛素高度修饰,并与早期和晚期内体标记物共定位。在缺乏内源性HDAC6的细胞中,c端泛素结合域和邻近的HDAC6紊乱区域对于挽救这种内体表型是必要和充分的。HDAC6缺陷似乎不会阻止运输所需的内体分选复合物(escrt)的募集,escrt协调内体成熟。然而,HDAC6的过表达可以逆转与早期ESCRT因子HRS耗竭相关的内核体表型。我们推测,当膜系统处于应激状态时,HDAC6促进了内体货物的包装和加工。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Biology of the Cell
Molecular Biology of the Cell 生物-细胞生物学
CiteScore
6.00
自引率
6.10%
发文量
402
审稿时长
2 months
期刊介绍: MBoC publishes research articles that present conceptual advances of broad interest and significance within all areas of cell, molecular, and developmental biology. We welcome manuscripts that describe advances with applications across topics including but not limited to: cell growth and division; nuclear and cytoskeletal processes; membrane trafficking and autophagy; organelle biology; quantitative cell biology; physical cell biology and mechanobiology; cell signaling; stem cell biology and development; cancer biology; cellular immunology and microbial pathogenesis; cellular neurobiology; prokaryotic cell biology; and cell biology of disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信