Hydroxyapatite pretreatment alleviates methylene blue phytotoxicity in wheat (Triticum aestivum L.) seedlings.

IF 3.1 4区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
Assia Ouzani, Hamida Maachou, Nabil Touzout, Hamza Moussa, Yamina Zouambia, Mahfoud Ainas, Adil Mihoub, Domenico Prisa, Jakub Černý, Yaser Hassan Dewir, Aftab Jamal
{"title":"Hydroxyapatite pretreatment alleviates methylene blue phytotoxicity in wheat (<i>Triticum aestivum</i> L.) seedlings.","authors":"Assia Ouzani, Hamida Maachou, Nabil Touzout, Hamza Moussa, Yamina Zouambia, Mahfoud Ainas, Adil Mihoub, Domenico Prisa, Jakub Černý, Yaser Hassan Dewir, Aftab Jamal","doi":"10.1080/15226514.2025.2544773","DOIUrl":null,"url":null,"abstract":"<p><p>Methylene blue (MB) contamination in agricultural systems, primarily from industrial wastewater, disrupts plant physiology by interfering with photosynthesis, inhibiting root nutrient uptake, and altering microbial dynamics. This leads to oxidative stress, nutrient imbalances, and stunted growth, reducing crop yields. Hydroxyapatite (HP) has been previously explored for its role in soil remediation and nutrient management, but its potential in alleviating dye-induced oxidative stress in crop plants has not been reported until now. This study is the first to demonstrate that HP can be repurposed as a dual-function biocompatible amendment to both adsorb MB and mitigate its phytotoxic effects in wheat (<i>Triticum aestivum</i> L.) seedlings. Wheat seedlings were hydroponically exposed to MB (20 mg L<sup>-1</sup> and 40 mg L<sup>-1</sup>), and key physiological and biochemical parameters were assessed. MB stress significantly reduced chlorophyll a (54%), chlorophyll b (52%), and carotenoids (40%), while increasing hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) by 35%-56% and malondialdehyde (MDA) by 109% at MB40 treatment. HP (1 mg L<sup>-1</sup>) application improved dry weight (89%) and seedling length (68%), enhanced chlorophyll a (108%), chlorophyll b (84%), and carotenoids (65%), while reducing H<sub>2</sub>O<sub>2</sub> (32%) and MDA (48%). Additionally, HP enhanced antioxidant enzyme activities, including ascorbate peroxidase (155%), catalase (88%), and peroxidase (55%) under MB stress. HP alleviated growth inhibition and oxidative stress by causing enhancement of the activity of the enzymes and related metabolites of the xenobiotic detoxification system and the secondary metabolism pathway. These findings suggest that HP effectively alleviates MB-induced oxidative stress, improving photosynthetic pigments and antioxidant defense mechanisms. This research supports HP as a sustainable amendment to enhance crop resilience in contaminated agricultural systems.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"1-12"},"PeriodicalIF":3.1000,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Phytoremediation","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/15226514.2025.2544773","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Methylene blue (MB) contamination in agricultural systems, primarily from industrial wastewater, disrupts plant physiology by interfering with photosynthesis, inhibiting root nutrient uptake, and altering microbial dynamics. This leads to oxidative stress, nutrient imbalances, and stunted growth, reducing crop yields. Hydroxyapatite (HP) has been previously explored for its role in soil remediation and nutrient management, but its potential in alleviating dye-induced oxidative stress in crop plants has not been reported until now. This study is the first to demonstrate that HP can be repurposed as a dual-function biocompatible amendment to both adsorb MB and mitigate its phytotoxic effects in wheat (Triticum aestivum L.) seedlings. Wheat seedlings were hydroponically exposed to MB (20 mg L-1 and 40 mg L-1), and key physiological and biochemical parameters were assessed. MB stress significantly reduced chlorophyll a (54%), chlorophyll b (52%), and carotenoids (40%), while increasing hydrogen peroxide (H2O2) by 35%-56% and malondialdehyde (MDA) by 109% at MB40 treatment. HP (1 mg L-1) application improved dry weight (89%) and seedling length (68%), enhanced chlorophyll a (108%), chlorophyll b (84%), and carotenoids (65%), while reducing H2O2 (32%) and MDA (48%). Additionally, HP enhanced antioxidant enzyme activities, including ascorbate peroxidase (155%), catalase (88%), and peroxidase (55%) under MB stress. HP alleviated growth inhibition and oxidative stress by causing enhancement of the activity of the enzymes and related metabolites of the xenobiotic detoxification system and the secondary metabolism pathway. These findings suggest that HP effectively alleviates MB-induced oxidative stress, improving photosynthetic pigments and antioxidant defense mechanisms. This research supports HP as a sustainable amendment to enhance crop resilience in contaminated agricultural systems.

羟基磷灰石预处理可减轻小麦幼苗亚甲基蓝的植物毒性。
农业系统中的亚甲基蓝污染主要来自工业废水,通过干扰光合作用、抑制根系养分吸收和改变微生物动力学来破坏植物生理。这会导致氧化应激、营养失衡和生长迟缓,从而降低作物产量。羟基磷灰石(Hydroxyapatite, HP)在土壤修复和养分管理方面的作用已被广泛研究,但其在缓解染料诱导的作物氧化应激方面的潜力尚未见报道。这项研究首次证明,HP可以作为一种双重功能的生物相容性添加剂,在小麦(Triticum aestivum L.)幼苗中吸附MB并减轻其植物毒性。对小麦幼苗进行水培处理(20 mg L-1和40 mg L-1),并对关键生理生化参数进行评价。MB40胁迫显著降低了叶绿素a(54%)、叶绿素b(52%)和类胡萝卜素(40%),使过氧化氢(H2O2)和丙二醛(MDA)含量分别增加了35% ~ 56%和109%。HP (1 mg L-1)提高了干重(89%)和幼苗长度(68%),提高了叶绿素a(108%)、叶绿素b(84%)和类胡萝卜素(65%),同时降低了H2O2(32%)和MDA(48%)。此外,在MB胁迫下,HP提高了抗坏血酸过氧化物酶(155%)、过氧化氢酶(88%)和过氧化物酶(55%)的抗氧化酶活性。HP通过增强外源解毒系统和次级代谢途径的酶和相关代谢物的活性来缓解生长抑制和氧化应激。上述结果提示,HP可有效缓解mb诱导的氧化应激,改善光合色素和抗氧化防御机制。本研究支持HP作为一种可持续的改良剂来提高受污染农业系统中作物的抗灾能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Phytoremediation
International Journal of Phytoremediation 环境科学-环境科学
CiteScore
7.60
自引率
5.40%
发文量
145
审稿时长
3.4 months
期刊介绍: The International Journal of Phytoremediation (IJP) is the first journal devoted to the publication of laboratory and field research describing the use of plant systems to solve environmental problems by enabling the remediation of soil, water, and air quality and by restoring ecosystem services in managed landscapes. Traditional phytoremediation has largely focused on soil and groundwater clean-up of hazardous contaminants. Phytotechnology expands this umbrella to include many of the natural resource management challenges we face in cities, on farms, and other landscapes more integrated with daily public activities. Wetlands that treat wastewater, rain gardens that treat stormwater, poplar tree plantings that contain pollutants, urban tree canopies that treat air pollution, and specialized plants that treat decommissioned mine sites are just a few examples of phytotechnologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信