Qianjiang Chen, Ke Ding, Mengfan Li, Rui Ma, Jian Lin, Jialin Guan, Jingli Lu
{"title":"Interleukin-33 promotes lipolysis of adipocytes and protects male mice against obesity via activation of β-adrenergic receptor signaling.","authors":"Qianjiang Chen, Ke Ding, Mengfan Li, Rui Ma, Jian Lin, Jialin Guan, Jingli Lu","doi":"10.1038/s41366-025-01873-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Targeting intracellular lipolysis represents a therapeutic potential for treating metabolic disorders such as obesity. Interleukin (IL)-33 has been shown to exert anti-obesity effects by reducing inflammation and restricting adipocyte hypertrophy.</p><p><strong>Methods: </strong>In this study, male mice on a high-fat diet (HFD) were treated with IL-33 once every 2 days for 2 weeks. 3T3-L1 cells were treated with IL-33 to verify the down-stream effect of β1-AR activation on the adipose cells.</p><p><strong>Results: </strong>IL-33 treatment led to a reduction in adipose tissue mass and a decreased in lipid deposition in male mice with obesity, accompanied by activation of β-adrenergic receptor (β-AR) signals. Immunostaining for tyrosine hydroxylase (TH) revealed an increase of TH within the adipose tissue in male mice. Metabolomic analysis showed that IL-33 induced a distinct metabolic profile in differentiated adipocytes, with significant changes in metabolites related to lipolysis pathways. Supplementation with β1-AR inhibitor significantly inhibited IL-33-induced p-HSL and p-PKA activation. Compared to IL-33 alone, β1-AR inhibitor reduced glycerol release and increased accumulation of lipid droplets. We also illustrated the fatty acids (FAs) process by tracking FA trafficking, and found that the labeled FA localized lipid droplets (LDs) in mature adipocytes but shifted from LDs to mitochondria at 20 ng/mL IL-33.</p><p><strong>Conclusion: </strong>We summarized that IL-33 regulated mature adipocyte metabolism and enhanced lipolysis in male mice via activation of the β-AR/cAMP/PKA/HSL signaling pathway. However, given that sex is a significant determinant in obesity, future studies should investigate potential sex-specific effects of IL-33 in metabolic regulation.</p>","PeriodicalId":14183,"journal":{"name":"International Journal of Obesity","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Obesity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41366-025-01873-8","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Targeting intracellular lipolysis represents a therapeutic potential for treating metabolic disorders such as obesity. Interleukin (IL)-33 has been shown to exert anti-obesity effects by reducing inflammation and restricting adipocyte hypertrophy.
Methods: In this study, male mice on a high-fat diet (HFD) were treated with IL-33 once every 2 days for 2 weeks. 3T3-L1 cells were treated with IL-33 to verify the down-stream effect of β1-AR activation on the adipose cells.
Results: IL-33 treatment led to a reduction in adipose tissue mass and a decreased in lipid deposition in male mice with obesity, accompanied by activation of β-adrenergic receptor (β-AR) signals. Immunostaining for tyrosine hydroxylase (TH) revealed an increase of TH within the adipose tissue in male mice. Metabolomic analysis showed that IL-33 induced a distinct metabolic profile in differentiated adipocytes, with significant changes in metabolites related to lipolysis pathways. Supplementation with β1-AR inhibitor significantly inhibited IL-33-induced p-HSL and p-PKA activation. Compared to IL-33 alone, β1-AR inhibitor reduced glycerol release and increased accumulation of lipid droplets. We also illustrated the fatty acids (FAs) process by tracking FA trafficking, and found that the labeled FA localized lipid droplets (LDs) in mature adipocytes but shifted from LDs to mitochondria at 20 ng/mL IL-33.
Conclusion: We summarized that IL-33 regulated mature adipocyte metabolism and enhanced lipolysis in male mice via activation of the β-AR/cAMP/PKA/HSL signaling pathway. However, given that sex is a significant determinant in obesity, future studies should investigate potential sex-specific effects of IL-33 in metabolic regulation.
期刊介绍:
The International Journal of Obesity is a multi-disciplinary forum for research describing basic, clinical and applied studies in biochemistry, physiology, genetics and nutrition, molecular, metabolic, psychological and epidemiological aspects of obesity and related disorders.
We publish a range of content types including original research articles, technical reports, reviews, correspondence and brief communications that elaborate on significant advances in the field and cover topical issues.