Hannah H Rashwan, Mohammed H Ali, Mazen M Mostafa, Raghda Ramadan, Mohamed Mysara
{"title":"Insights into the tripartite relationship between cervical cancer, human papillomavirus, and the vaginal microbiome: a mega-analysis.","authors":"Hannah H Rashwan, Mohammed H Ali, Mazen M Mostafa, Raghda Ramadan, Mohamed Mysara","doi":"10.1186/s40246-025-00795-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Cervical cancer (CC) is the fourth most prevalent malignancy among women worldwide, where 99.7% of the cases are linked to persistent human papillomavirus (HPV) infections. While emerging evidence suggests a role for vaginal microbiome dysbiosis in HPV-driven CC, the specific microbial alterations and their functional implications remain unclear. However, inconsistencies in identifying specific microbial signatures-largely due to heterogeneous study designs, targeted 16S rRNA regions, and data processing methods-have limited the generalizability of existing findings. To address these challenges, we conducted a standardized mega-analysis using a compositionality-aware approach to ensure consistency and minimize technical bias across studies.</p><p><strong>Results: </strong>Our mega-analysis consolidates findings from five case-control 16S rRNA ampilicon sequencing studies, encompassing 215 samples. Compared to healthy controls, CC patients exhibited significantly higher alpha diversity (Shannon index, p <0.005) and a shift from a Lactobacillus-dominant to a polymicrobial vaginal microbiome. This microbial dysbiosis was characterized by an increased abundance of Porphyromonadaceae, particularly Porphyromonas asaccharolytica, and other anaerobic bacterial species such as Campylobacter ureolyticus, Peptococcus niger, and Anaerococcus obesiensis (FDR <0.05). Functional profiling of the altered microbiome revealed enrichment in pathways associated with chronic inflammation, fatty acid biosynthesis, amino acid metabolism, cellular proliferation, invasion, and metastasis.</p><p><strong>Conclusions: </strong>This mega-analysis presents the most methodologically homogeneous study to date of CC-associated vaginal microbiome using publicly available 16S datasets. Our findings not only deepen our understanding of microbial influences on CC but also pave the way for novel diagnostic and therapeutic approaches potentially enhancing patient outcomes in CC care. These insights open new avenues for clinical interventions that extend beyond conventional HPV-centric strategies.</p>","PeriodicalId":13183,"journal":{"name":"Human Genomics","volume":"19 1","pages":"89"},"PeriodicalIF":4.3000,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12341356/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Genomics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40246-025-00795-w","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Cervical cancer (CC) is the fourth most prevalent malignancy among women worldwide, where 99.7% of the cases are linked to persistent human papillomavirus (HPV) infections. While emerging evidence suggests a role for vaginal microbiome dysbiosis in HPV-driven CC, the specific microbial alterations and their functional implications remain unclear. However, inconsistencies in identifying specific microbial signatures-largely due to heterogeneous study designs, targeted 16S rRNA regions, and data processing methods-have limited the generalizability of existing findings. To address these challenges, we conducted a standardized mega-analysis using a compositionality-aware approach to ensure consistency and minimize technical bias across studies.
Results: Our mega-analysis consolidates findings from five case-control 16S rRNA ampilicon sequencing studies, encompassing 215 samples. Compared to healthy controls, CC patients exhibited significantly higher alpha diversity (Shannon index, p <0.005) and a shift from a Lactobacillus-dominant to a polymicrobial vaginal microbiome. This microbial dysbiosis was characterized by an increased abundance of Porphyromonadaceae, particularly Porphyromonas asaccharolytica, and other anaerobic bacterial species such as Campylobacter ureolyticus, Peptococcus niger, and Anaerococcus obesiensis (FDR <0.05). Functional profiling of the altered microbiome revealed enrichment in pathways associated with chronic inflammation, fatty acid biosynthesis, amino acid metabolism, cellular proliferation, invasion, and metastasis.
Conclusions: This mega-analysis presents the most methodologically homogeneous study to date of CC-associated vaginal microbiome using publicly available 16S datasets. Our findings not only deepen our understanding of microbial influences on CC but also pave the way for novel diagnostic and therapeutic approaches potentially enhancing patient outcomes in CC care. These insights open new avenues for clinical interventions that extend beyond conventional HPV-centric strategies.
期刊介绍:
Human Genomics is a peer-reviewed, open access, online journal that focuses on the application of genomic analysis in all aspects of human health and disease, as well as genomic analysis of drug efficacy and safety, and comparative genomics.
Topics covered by the journal include, but are not limited to: pharmacogenomics, genome-wide association studies, genome-wide sequencing, exome sequencing, next-generation deep-sequencing, functional genomics, epigenomics, translational genomics, expression profiling, proteomics, bioinformatics, animal models, statistical genetics, genetic epidemiology, human population genetics and comparative genomics.