{"title":"Microplastics pollution in Bangladesh: A Decade of Challenges, Impacts and Pathways to Sustainability.","authors":"Chowdhury Alfi Afroze, Nasir Ahmed, Nur Kabidul Azam, Rownak Jahan, Hafizur Rahman","doi":"10.1093/inteam/vjaf108","DOIUrl":null,"url":null,"abstract":"<p><p>This review revisits microplastic pollution in Bangladesh from 2014 to 2024, synthesizing research on distribution, plastic types, policies, and mitigation strategies. Using PubMed and Google Scholar, peer-reviewed articles and documents were analysed to assess the sources, impacts, and policy effectiveness. Microplastics contaminate rivers, soil, air, fertilizers, and food products. The dominant polymers, including polyethylene, polypropylene, polystyrene, polyethylene terephthalate, and polyamide, originate from fishing nets, industrial discharge, and urban waste, threatening ecosystems and food chains. Plastic pollution is exacerbated by transboundary river systems, excessive plastic production, the use of single-use plastics, and ineffective waste management. Meghna, Karnaphuli, and Rupsha rivers transport 1 million metric tons of mismanaged waste annually to coastal areas. The plastic industry, employing 1.2 million people across 5,000 manufacturers, has increased per capita plastic consumption from 3 kg in 2005 to 9 kg in 2020, worsening waste accumulation. The COVID-19 pandemic accelerated the crisis, with polythene bag usage increasing to 21 billion, generating 78,433 tons of waste. Plastic pollution costs USD 39 million annually, impacting tourism, fisheries, and municipal budgets, while microplastic contamination threatens seafood exports, and clean-up costs consume 30% of Bangladesh's environmental budget. Using an agent-based system dynamics model, simulations predict that per capita plastic waste will rise to 11.6 kg by 2040, with landfill accumulation reaching 70,000 tons and riverine discharge increasing from 512 to 834 tons, raising the plastic waste footprint index (PWFI) to 24. Policy 2, which implements 69% conversion, 80% source separation, and 50% riverine discharge reduction, proves most effective, lowering PWFI to 1.07 and ensuring sustainable waste management. However, an integrated approach combining research, policy enforcement, technological innovation, and global collaboration is crucial. Strengthening waste management framework, regulatory enforcement, and sustainable economic strategies will enable Bangladesh to mitigate microplastic pollution, advance its circular economy, and contribute to global environmental conservation.</p>","PeriodicalId":13557,"journal":{"name":"Integrated Environmental Assessment and Management","volume":" ","pages":""},"PeriodicalIF":8.4000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrated Environmental Assessment and Management","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1093/inteam/vjaf108","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This review revisits microplastic pollution in Bangladesh from 2014 to 2024, synthesizing research on distribution, plastic types, policies, and mitigation strategies. Using PubMed and Google Scholar, peer-reviewed articles and documents were analysed to assess the sources, impacts, and policy effectiveness. Microplastics contaminate rivers, soil, air, fertilizers, and food products. The dominant polymers, including polyethylene, polypropylene, polystyrene, polyethylene terephthalate, and polyamide, originate from fishing nets, industrial discharge, and urban waste, threatening ecosystems and food chains. Plastic pollution is exacerbated by transboundary river systems, excessive plastic production, the use of single-use plastics, and ineffective waste management. Meghna, Karnaphuli, and Rupsha rivers transport 1 million metric tons of mismanaged waste annually to coastal areas. The plastic industry, employing 1.2 million people across 5,000 manufacturers, has increased per capita plastic consumption from 3 kg in 2005 to 9 kg in 2020, worsening waste accumulation. The COVID-19 pandemic accelerated the crisis, with polythene bag usage increasing to 21 billion, generating 78,433 tons of waste. Plastic pollution costs USD 39 million annually, impacting tourism, fisheries, and municipal budgets, while microplastic contamination threatens seafood exports, and clean-up costs consume 30% of Bangladesh's environmental budget. Using an agent-based system dynamics model, simulations predict that per capita plastic waste will rise to 11.6 kg by 2040, with landfill accumulation reaching 70,000 tons and riverine discharge increasing from 512 to 834 tons, raising the plastic waste footprint index (PWFI) to 24. Policy 2, which implements 69% conversion, 80% source separation, and 50% riverine discharge reduction, proves most effective, lowering PWFI to 1.07 and ensuring sustainable waste management. However, an integrated approach combining research, policy enforcement, technological innovation, and global collaboration is crucial. Strengthening waste management framework, regulatory enforcement, and sustainable economic strategies will enable Bangladesh to mitigate microplastic pollution, advance its circular economy, and contribute to global environmental conservation.
期刊介绍:
Integrated Environmental Assessment and Management (IEAM) publishes the science underpinning environmental decision making and problem solving. Papers submitted to IEAM must link science and technical innovations to vexing regional or global environmental issues in one or more of the following core areas:
Science-informed regulation, policy, and decision making
Health and ecological risk and impact assessment
Restoration and management of damaged ecosystems
Sustaining ecosystems
Managing large-scale environmental change
Papers published in these broad fields of study are connected by an array of interdisciplinary engineering, management, and scientific themes, which collectively reflect the interconnectedness of the scientific, social, and environmental challenges facing our modern global society:
Methods for environmental quality assessment; forecasting across a number of ecosystem uses and challenges (systems-based, cost-benefit, ecosystem services, etc.); measuring or predicting ecosystem change and adaptation
Approaches that connect policy and management tools; harmonize national and international environmental regulation; merge human well-being with ecological management; develop and sustain the function of ecosystems; conceptualize, model and apply concepts of spatial and regional sustainability
Assessment and management frameworks that incorporate conservation, life cycle, restoration, and sustainability; considerations for climate-induced adaptation, change and consequences, and vulnerability
Environmental management applications using risk-based approaches; considerations for protecting and fostering biodiversity, as well as enhancement or protection of ecosystem services and resiliency.