{"title":"Investigating potential targets of Wulingsan in diabetic nephropathy through network pharmacology and experimental validation.","authors":"Xicheng Hu, Zhen Wang, Liyan Zhang","doi":"10.3389/fmolb.2025.1647796","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Diabetic Nephropathy (DN), a major microvascular complication of diabetes, poses challenges for current treatments to effectively delay its progression. Wulingsan (WLS), a traditional Chinese medicine formula, possesses potential for regulating water-fluid metabolism, and exhibits anti-inflammatory and antioxidant properties, yet its multi-target mechanism in treating DN remains unclear. This study aims to systematically elucidate the molecular mechanisms of WLS in the treatment of DN through network pharmacology, molecular docking, and <i>in vitro</i> experiments.</p><p><strong>Methods: </strong>Active ingredients of WLS and their targets were screened using the TCMSP database, while DN-related targets were obtained from the GeneCards and OMIM databases to construct an \"ingredient-target-disease\" network. GO and KEGG pathway enrichment analyses were performed using DAVID to identify key biological processes and signaling pathways. A protein-protein interaction (PPI) network was constructed via the STRING database, and key targets were screened using the CytoHubba plugin. Subsequently, molecular docking and molecular dynamics simulations were conducted to validate the binding affinity and stability of active ingredients with key targets. <i>In vitro</i>, a high glucose-induced HK-2 cell model was employed, and the effects of WLS on cell viability and cell cycle were assessed using CCK-8 assays and flow cytometry, respectively.</p><p><strong>Results: </strong>The study screened and identified SRC, AKT1, TNF, ESR1, and HSP90AA1 as key targets for the treatment of DN. KEGG enrichment analysis revealed that WLS primarily regulates signaling pathways such as PI3K-Akt and MAPK, which are closely associated with inflammation, oxidative stress, and fibrosis. Molecular docking indicated that active ingredients (β-caryophyllene, alisol C) exhibited binding energies below -5.0 kcal/mol with key targets (TNF, HSP90AA1), and molecular dynamics simulations further validated their binding stability. <i>In vitro</i> experiments demonstrated that WLS significantly inhibited the proliferation of high glucose-induced HK-2 cells (P < 0.01) and induced G2/M phase cell cycle arrest (P < 0.01).</p><p><strong>Conclusion: </strong>Wulingsan alleviates the progression of Diabetic Nephropathy by its multiple active ingredients acting synergistically on key targets such as SRC, AKT1, and TNF, thereby regulating PI3K-Akt and MAPK signaling pathways to inhibit inflammation, oxidative stress, and fibrosis. This research provides a theoretical basis for the clinical application of WLS, and its therapeutic efficacy warrants further verification through future <i>in vivo</i> experiments.</p>","PeriodicalId":12465,"journal":{"name":"Frontiers in Molecular Biosciences","volume":"12 ","pages":"1647796"},"PeriodicalIF":3.9000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12339558/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Molecular Biosciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fmolb.2025.1647796","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Diabetic Nephropathy (DN), a major microvascular complication of diabetes, poses challenges for current treatments to effectively delay its progression. Wulingsan (WLS), a traditional Chinese medicine formula, possesses potential for regulating water-fluid metabolism, and exhibits anti-inflammatory and antioxidant properties, yet its multi-target mechanism in treating DN remains unclear. This study aims to systematically elucidate the molecular mechanisms of WLS in the treatment of DN through network pharmacology, molecular docking, and in vitro experiments.
Methods: Active ingredients of WLS and their targets were screened using the TCMSP database, while DN-related targets were obtained from the GeneCards and OMIM databases to construct an "ingredient-target-disease" network. GO and KEGG pathway enrichment analyses were performed using DAVID to identify key biological processes and signaling pathways. A protein-protein interaction (PPI) network was constructed via the STRING database, and key targets were screened using the CytoHubba plugin. Subsequently, molecular docking and molecular dynamics simulations were conducted to validate the binding affinity and stability of active ingredients with key targets. In vitro, a high glucose-induced HK-2 cell model was employed, and the effects of WLS on cell viability and cell cycle were assessed using CCK-8 assays and flow cytometry, respectively.
Results: The study screened and identified SRC, AKT1, TNF, ESR1, and HSP90AA1 as key targets for the treatment of DN. KEGG enrichment analysis revealed that WLS primarily regulates signaling pathways such as PI3K-Akt and MAPK, which are closely associated with inflammation, oxidative stress, and fibrosis. Molecular docking indicated that active ingredients (β-caryophyllene, alisol C) exhibited binding energies below -5.0 kcal/mol with key targets (TNF, HSP90AA1), and molecular dynamics simulations further validated their binding stability. In vitro experiments demonstrated that WLS significantly inhibited the proliferation of high glucose-induced HK-2 cells (P < 0.01) and induced G2/M phase cell cycle arrest (P < 0.01).
Conclusion: Wulingsan alleviates the progression of Diabetic Nephropathy by its multiple active ingredients acting synergistically on key targets such as SRC, AKT1, and TNF, thereby regulating PI3K-Akt and MAPK signaling pathways to inhibit inflammation, oxidative stress, and fibrosis. This research provides a theoretical basis for the clinical application of WLS, and its therapeutic efficacy warrants further verification through future in vivo experiments.
期刊介绍:
Much of contemporary investigation in the life sciences is devoted to the molecular-scale understanding of the relationships between genes and the environment — in particular, dynamic alterations in the levels, modifications, and interactions of cellular effectors, including proteins. Frontiers in Molecular Biosciences offers an international publication platform for basic as well as applied research; we encourage contributions spanning both established and emerging areas of biology. To this end, the journal draws from empirical disciplines such as structural biology, enzymology, biochemistry, and biophysics, capitalizing as well on the technological advancements that have enabled metabolomics and proteomics measurements in massively parallel throughput, and the development of robust and innovative computational biology strategies. We also recognize influences from medicine and technology, welcoming studies in molecular genetics, molecular diagnostics and therapeutics, and nanotechnology.
Our ultimate objective is the comprehensive illustration of the molecular mechanisms regulating proteins, nucleic acids, carbohydrates, lipids, and small metabolites in organisms across all branches of life.
In addition to interesting new findings, techniques, and applications, Frontiers in Molecular Biosciences will consider new testable hypotheses to inspire different perspectives and stimulate scientific dialogue. The integration of in silico, in vitro, and in vivo approaches will benefit endeavors across all domains of the life sciences.