Integrating High-Entropy Alloy with Hierarchical Hydrogels for Enhanced Solar-Driven Water Desalination

IF 3.9 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Yupeng Xiao, Weiguang Ma*, Wence Ma, Huayu Liu, Yulang Cui, Weihao Xia, Hefeng Zhang, Xiaotong Gu, Chenyi Shao* and Xu Zong, 
{"title":"Integrating High-Entropy Alloy with Hierarchical Hydrogels for Enhanced Solar-Driven Water Desalination","authors":"Yupeng Xiao,&nbsp;Weiguang Ma*,&nbsp;Wence Ma,&nbsp;Huayu Liu,&nbsp;Yulang Cui,&nbsp;Weihao Xia,&nbsp;Hefeng Zhang,&nbsp;Xiaotong Gu,&nbsp;Chenyi Shao* and Xu Zong,&nbsp;","doi":"10.1021/acs.langmuir.5c03141","DOIUrl":null,"url":null,"abstract":"<p >Developing high-performance photothermal materials represents a critical pathway toward achieving efficient solar-driven water desalination. Herein, we synthesize FeCoNiCuZnMn high-entropy alloy nanoparticles anchored on a carbon nanotube substrate and subsequently incorporate them with polypyrrole and poly(vinyl alcohol) into a hierarchical hydrogel network (FeCoNiCuZnMn HEA-NPs/CNT/PPy@PVA) for highly efficient and stable solar-driven water evaporation. Experimental evidence confirms that the interfacial evaporation performance arises from three synergistic mechanisms: (i) near-unity solar absorption (95.24%) enabled by FeCoNiCuZnMn HEA-NP/hydrogel heterojunctions, (ii) reduced evaporation enthalpy (1731.03 kJ/kg) through PVA-mediated hydrogen bond restructuring, and (iii) enhanced mechanical-environmental stability via integration of HEA-NPs’ robustness with hydrogels’ eco-compatibility. Consequently, the as-prepared system achieves performance for interfacial evaporation, demonstrating 96.9% photothermal conversion efficiency and an evaporation rate of 2.22 kg m<sup>–2</sup> h<sup>–1</sup> under 1 sun irradiation, while maintaining operational stability. Practical field tests confirm successful desalination of seawater (3.5 wt %) to World Health Organization-compliant drinking water. This work establishes design principles for photothermal materials through multiscale regulation of energy-water interactions.</p>","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"41 33","pages":"22546–22557"},"PeriodicalIF":3.9000,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.langmuir.5c03141","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Developing high-performance photothermal materials represents a critical pathway toward achieving efficient solar-driven water desalination. Herein, we synthesize FeCoNiCuZnMn high-entropy alloy nanoparticles anchored on a carbon nanotube substrate and subsequently incorporate them with polypyrrole and poly(vinyl alcohol) into a hierarchical hydrogel network (FeCoNiCuZnMn HEA-NPs/CNT/PPy@PVA) for highly efficient and stable solar-driven water evaporation. Experimental evidence confirms that the interfacial evaporation performance arises from three synergistic mechanisms: (i) near-unity solar absorption (95.24%) enabled by FeCoNiCuZnMn HEA-NP/hydrogel heterojunctions, (ii) reduced evaporation enthalpy (1731.03 kJ/kg) through PVA-mediated hydrogen bond restructuring, and (iii) enhanced mechanical-environmental stability via integration of HEA-NPs’ robustness with hydrogels’ eco-compatibility. Consequently, the as-prepared system achieves performance for interfacial evaporation, demonstrating 96.9% photothermal conversion efficiency and an evaporation rate of 2.22 kg m–2 h–1 under 1 sun irradiation, while maintaining operational stability. Practical field tests confirm successful desalination of seawater (3.5 wt %) to World Health Organization-compliant drinking water. This work establishes design principles for photothermal materials through multiscale regulation of energy-water interactions.

Abstract Image

集成高熵合金与分层水凝胶增强太阳能驱动海水淡化。
开发高性能光热材料是实现高效太阳能驱动海水淡化的关键途径。在此,我们合成了固定在碳纳米管基底上的FeCoNiCuZnMn高熵合金纳米颗粒,随后将其与聚吡咯和聚乙烯醇结合成层次化的水凝胶网络(FeCoNiCuZnMn HEA-NPs/CNT/PPy@PVA),用于高效稳定的太阳能驱动水蒸发。实验证据证实,界面蒸发性能来自三个协同机制:(i) FeCoNiCuZnMn HEA-NP/水凝胶异质结实现近统一的太阳吸收(95.24%),(ii)通过pva介导的氢键重组降低蒸发焓(1731.03 kJ/kg),以及(iii)通过HEA-NP的鲁强性与水凝胶的生态相容性相结合,增强了机械-环境稳定性。结果表明,制备的系统具有良好的界面蒸发性能,在1次太阳照射下光热转换效率为96.9%,蒸发速率为2.22 kg m-2 h-1,同时保持了运行稳定性。实际的现场试验证实,成功地将海水(3.5 wt %)淡化为符合世界卫生组织标准的饮用水。这项工作通过多尺度调节能量-水相互作用建立了光热材料的设计原则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Langmuir
Langmuir 化学-材料科学:综合
CiteScore
6.50
自引率
10.30%
发文量
1464
审稿时长
2.1 months
期刊介绍: Langmuir is an interdisciplinary journal publishing articles in the following subject categories: Colloids: surfactants and self-assembly, dispersions, emulsions, foams Interfaces: adsorption, reactions, films, forces Biological Interfaces: biocolloids, biomolecular and biomimetic materials Materials: nano- and mesostructured materials, polymers, gels, liquid crystals Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do? Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*. This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信