The distance function and Lipschitz classes of mappings between metric spaces

IF 0.8 3区 数学 Q2 MATHEMATICS
Mathematika Pub Date : 2025-08-13 DOI:10.1112/mtk.70038
Marijan Marković
{"title":"The distance function and Lipschitz classes of mappings between metric spaces","authors":"Marijan Marković","doi":"10.1112/mtk.70038","DOIUrl":null,"url":null,"abstract":"<p>We investigate when the local Lipschitz property of the real-valued function <span></span><math></math> implies the global Lipschitz property of the mapping <span></span><math></math> between the metric spaces <span></span><math></math> and <span></span><math></math>. Here, <span></span><math></math> denotes the distance of <span></span><math></math> from the non-empty set <span></span><math></math>. As a consequence, we find that an analytic function on a uniform domain of a normed space belongs to the Lipschitz class if and only if its modulus satisfies the same condition; in the case of the unit disk this result is proved by Dyakonov. We use the recently established version of a classical theorem by Hardy and Littlewood for mappings between metric spaces. This paper is a continuation of the recent article by the author [Marković, J. Geom. Anal. <b>34</b> (2024), https://doi.org/10.48550/arXiv.2405.11509].</p>","PeriodicalId":18463,"journal":{"name":"Mathematika","volume":"71 4","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematika","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/mtk.70038","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate when the local Lipschitz property of the real-valued function implies the global Lipschitz property of the mapping between the metric spaces and . Here, denotes the distance of from the non-empty set . As a consequence, we find that an analytic function on a uniform domain of a normed space belongs to the Lipschitz class if and only if its modulus satisfies the same condition; in the case of the unit disk this result is proved by Dyakonov. We use the recently established version of a classical theorem by Hardy and Littlewood for mappings between metric spaces. This paper is a continuation of the recent article by the author [Marković, J. Geom. Anal. 34 (2024), https://doi.org/10.48550/arXiv.2405.11509].

Abstract Image

Abstract Image

度量空间间映射的距离函数和Lipschitz类
研究了实值函数的局部Lipschitz性质何时蕴涵了度量空间与映射的全局Lipschitz性质。表示到非空集合的距离。因此,我们发现在赋范空间的一致域上的解析函数当且仅当其模满足相同的条件时属于Lipschitz类;在单位圆盘的情况下,这个结果由Dyakonov证明。我们使用Hardy和Littlewood最近建立的关于度量空间之间映射的经典定理的版本。本文是作者markovovic, J. Geom最近文章的延续。Anal. 34 (2024), https://doi.org/10.48550/arXiv.2405.11509]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematika
Mathematika MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.40
自引率
0.00%
发文量
60
审稿时长
>12 weeks
期刊介绍: Mathematika publishes both pure and applied mathematical articles and has done so continuously since its founding by Harold Davenport in the 1950s. The traditional emphasis has been towards the purer side of mathematics but applied mathematics and articles addressing both aspects are equally welcome. The journal is published by the London Mathematical Society, on behalf of its owner University College London, and will continue to publish research papers of the highest mathematical quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信