Spatial and Temporal Variability in Tide-Induced Icequake Activity at the Astrolabe Coastal Glacier, East Antarctica

IF 3.8 2区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
Tifenn Le Bris, Guilhem Barruol, Florent Gimbert, Emmanuel Le Meur, Dimitri Zigone, Anuar Togaibekov, Denis Lombardi, Maxime Bès de Berc, Armelle Bernard
{"title":"Spatial and Temporal Variability in Tide-Induced Icequake Activity at the Astrolabe Coastal Glacier, East Antarctica","authors":"Tifenn Le Bris,&nbsp;Guilhem Barruol,&nbsp;Florent Gimbert,&nbsp;Emmanuel Le Meur,&nbsp;Dimitri Zigone,&nbsp;Anuar Togaibekov,&nbsp;Denis Lombardi,&nbsp;Maxime Bès de Berc,&nbsp;Armelle Bernard","doi":"10.1029/2024JF008054","DOIUrl":null,"url":null,"abstract":"<p>The grounding zones (GZ) of marine-terminating glaciers, where ice transitions from grounded to floating, experience strong mechanical changes in response to ocean tides. The spatial and temporal dynamics of these changes remain poorly documented, as they require multi-scale observations capable of resolving internal ice deformation. Here, we use seismic observations, collected across different years and various scales, coupled with GNSS observations, to evaluate the brittle deformation at the GZ and shear margins of the Astrolabe Glacier (East Antarctica, Terre Adélie). Automatic detection of icequakes reveals that seismic occurrence patterns vary with tides and sensor locations. At a multi-kilometer scale, we observe and locate numbers of large-duration magnitude events (average Md around 0.0) associated with shear margins. At a smaller scale (a few hundreds of meters), using a dense array of seismic nodes deployed across the GZ and GNSS observations of vertical ice motion, we capture numerous small-magnitude events (Md as low as −4.0) with spatial and time occurrences set by tide-modulated GZ dynamics. At rising tides, seismicity is dominant on the floating part of the glacier, while at falling tides, it is dominant over its grounded part. Based on these observations, we propose a conceptual framework for the dynamics of icequake activity at the glacier GZ, accounting for its three-dimensional tidal-induced bending, generating strain rates large enough to induce brittle deformation. Our findings highlight the value of multiscale seismic observations of outlet glaciers for capturing GZ space and time high-resolution seismic and displacement responses to tidal forcing.</p>","PeriodicalId":15887,"journal":{"name":"Journal of Geophysical Research: Earth Surface","volume":"130 8","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2024JF008054","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Earth Surface","FirstCategoryId":"89","ListUrlMain":"https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2024JF008054","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The grounding zones (GZ) of marine-terminating glaciers, where ice transitions from grounded to floating, experience strong mechanical changes in response to ocean tides. The spatial and temporal dynamics of these changes remain poorly documented, as they require multi-scale observations capable of resolving internal ice deformation. Here, we use seismic observations, collected across different years and various scales, coupled with GNSS observations, to evaluate the brittle deformation at the GZ and shear margins of the Astrolabe Glacier (East Antarctica, Terre Adélie). Automatic detection of icequakes reveals that seismic occurrence patterns vary with tides and sensor locations. At a multi-kilometer scale, we observe and locate numbers of large-duration magnitude events (average Md around 0.0) associated with shear margins. At a smaller scale (a few hundreds of meters), using a dense array of seismic nodes deployed across the GZ and GNSS observations of vertical ice motion, we capture numerous small-magnitude events (Md as low as −4.0) with spatial and time occurrences set by tide-modulated GZ dynamics. At rising tides, seismicity is dominant on the floating part of the glacier, while at falling tides, it is dominant over its grounded part. Based on these observations, we propose a conceptual framework for the dynamics of icequake activity at the glacier GZ, accounting for its three-dimensional tidal-induced bending, generating strain rates large enough to induce brittle deformation. Our findings highlight the value of multiscale seismic observations of outlet glaciers for capturing GZ space and time high-resolution seismic and displacement responses to tidal forcing.

Abstract Image

Abstract Image

Abstract Image

Abstract Image

Abstract Image

东南极洲星盘海岸冰川潮汐诱发冰震活动的时空变异
入海冰川的接地带(GZ)是冰川从接地向漂浮转变的地方,在海洋潮汐的作用下会发生强烈的力学变化。这些变化的时空动态记录仍然很少,因为它们需要能够解决内部冰变形的多尺度观测。本文利用不同年份和不同尺度的地震观测资料,结合GNSS观测资料,对Astrolabe冰川(南极洲东部,Terre adsamlie) GZ和剪切边缘的脆性变形进行了评价。冰震自动探测显示,地震发生模式随潮汐和传感器位置的变化而变化。在多公里尺度上,我们观测并定位了与剪切边缘相关的大持续时间震级事件(平均Md约为0.0)的数量。在更小的尺度上(几百米),利用部署在GZ的密集地震节点阵列和GNSS垂直冰运动观测,我们捕获了许多小震级事件(Md低至- 4.0),其空间和时间发生由潮汐调制的GZ动力学设定。在涨潮时,地震活动主要发生在冰川的浮动部分,而在落潮时,地震活动主要发生在冰川的接地部分。基于这些观测结果,我们提出了GZ冰川冰震活动动力学的概念框架,考虑到其三维潮汐引起的弯曲,产生足以引起脆性变形的应变率。研究结果强调了出口冰川多尺度地震观测对捕获GZ时空高分辨率地震和位移对潮汐强迫的响应的价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geophysical Research: Earth Surface
Journal of Geophysical Research: Earth Surface Earth and Planetary Sciences-Earth-Surface Processes
CiteScore
6.30
自引率
10.30%
发文量
162
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信