Large time behavior for the nonlinear dissipative Boussinesq equation

IF 0.8 3区 数学 Q2 MATHEMATICS
Wenhui Chen, Hiroshi Takeda
{"title":"Large time behavior for the nonlinear dissipative Boussinesq equation","authors":"Wenhui Chen,&nbsp;Hiroshi Takeda","doi":"10.1002/mana.70015","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we study the nonlinear dissipative Boussinesq equation in the whole space <span></span><math>\n <semantics>\n <msup>\n <mi>R</mi>\n <mi>n</mi>\n </msup>\n <annotation>$\\mathbb {R}^n$</annotation>\n </semantics></math> with <span></span><math>\n <semantics>\n <msup>\n <mi>L</mi>\n <mn>1</mn>\n </msup>\n <annotation>$L^1$</annotation>\n </semantics></math> integrable data. As our preparations, the optimal estimates as well as the optimal leading terms for the linearized model are derived by performing the Wentzel–Kramers–Brillouin (WKB) analysis and the Fourier analysis. Then, under some conditions on the power <span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math> of nonlinearity, we demonstrate global (in time) existence of small data Sobolev solutions with different regularities to the nonlinear model by applying some fractional-order interpolations, where the optimal growth (<span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>=</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$n=2$</annotation>\n </semantics></math>) and decay (<span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>⩾</mo>\n <mn>3</mn>\n </mrow>\n <annotation>$n\\geqslant 3$</annotation>\n </semantics></math>) estimates of solutions for large time are given. Simultaneously, we get a new large time asymptotic profile of global (in time) solutions. These results imply some influence of dispersion and dissipation on qualitative properties of solution.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 8","pages":"2770-2793"},"PeriodicalIF":0.8000,"publicationDate":"2025-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.70015","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study the nonlinear dissipative Boussinesq equation in the whole space R n $\mathbb {R}^n$ with L 1 $L^1$ integrable data. As our preparations, the optimal estimates as well as the optimal leading terms for the linearized model are derived by performing the Wentzel–Kramers–Brillouin (WKB) analysis and the Fourier analysis. Then, under some conditions on the power p $p$ of nonlinearity, we demonstrate global (in time) existence of small data Sobolev solutions with different regularities to the nonlinear model by applying some fractional-order interpolations, where the optimal growth ( n = 2 $n=2$ ) and decay ( n 3 $n\geqslant 3$ ) estimates of solutions for large time are given. Simultaneously, we get a new large time asymptotic profile of global (in time) solutions. These results imply some influence of dispersion and dissipation on qualitative properties of solution.

非线性耗散Boussinesq方程的大时间行为
本文研究了整个空间R n $\mathbb {R}^n$中具有L 1 $L^1$可积数据的非线性耗散Boussinesq方程。作为我们的准备工作,通过进行WKB分析和傅里叶分析,得到了线性化模型的最优估计和最优前导项。然后,在非线性幂p $p$的某些条件下,我们利用分数阶插值证明了非线性模型具有不同规律的小数据Sobolev解的全局(及时)存在性。其中给出了长时间解决方案的最佳增长(n = 2 $n=2$)和衰减(n大于或等于3 $n\geqslant 3$)估计。同时,我们得到了全局(及时)解的一个新的大时间渐近轮廓。这些结果表明,色散和耗散对溶液的定性性质有一定的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
157
审稿时长
4-8 weeks
期刊介绍: Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信