Positive solution for the Kirchhoff-type equation with supercritical concave and convex nonlinearities

IF 0.8 3区 数学 Q2 MATHEMATICS
Liying Shan, Wei Shuai
{"title":"Positive solution for the Kirchhoff-type equation with supercritical concave and convex nonlinearities","authors":"Liying Shan,&nbsp;Wei Shuai","doi":"10.1002/mana.70002","DOIUrl":null,"url":null,"abstract":"<p>We study the following Kirchhoff-type equation\n\n </p><p>Via a new variational principle established by Moameni (C. R. Math. Acad. Sci. Paris. <b>355</b> (2017) 1236–1241), we shall show that, for each <span></span><math>\n <semantics>\n <mrow>\n <mi>p</mi>\n <mo>&gt;</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$p&gt;2$</annotation>\n </semantics></math>, there exists <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>λ</mi>\n <mo>∗</mo>\n </msup>\n <mo>&gt;</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$\\lambda ^*&gt;0$</annotation>\n </semantics></math> such that for each <span></span><math>\n <semantics>\n <mrow>\n <mi>λ</mi>\n <mo>∈</mo>\n <mo>(</mo>\n <mn>0</mn>\n <mo>,</mo>\n <msup>\n <mi>λ</mi>\n <mo>∗</mo>\n </msup>\n <mo>)</mo>\n </mrow>\n <annotation>$\\lambda \\in (0,\\lambda ^*)$</annotation>\n </semantics></math> Equation (0.1) has a positive solution with negative energy. Furthermore, by using the improved Clark theorem, we can obtain a sequence of solutions with negative energy converging to zero in <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>L</mi>\n <mi>∞</mi>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>Ω</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$L^{\\infty }(\\Omega)$</annotation>\n </semantics></math> without the restriction of <span></span><math>\n <semantics>\n <mi>λ</mi>\n <annotation>$\\lambda$</annotation>\n </semantics></math>.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 8","pages":"2476-2492"},"PeriodicalIF":0.8000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.70002","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study the following Kirchhoff-type equation

Via a new variational principle established by Moameni (C. R. Math. Acad. Sci. Paris. 355 (2017) 1236–1241), we shall show that, for each p > 2 $p>2$ , there exists λ > 0 $\lambda ^*>0$ such that for each λ ( 0 , λ ) $\lambda \in (0,\lambda ^*)$ Equation (0.1) has a positive solution with negative energy. Furthermore, by using the improved Clark theorem, we can obtain a sequence of solutions with negative energy converging to zero in L ( Ω ) $L^{\infty }(\Omega)$ without the restriction of λ $\lambda$ .

具有超临界凹凸非线性的kirchhoff型方程的正解
我们利用Moameni (C. R. Math)建立的一个新的变分原理来研究下列kirchhoff型方程。学术科学Paris. 355(2017) 1236-1241),我们将表明,对于每个p &gt;2 $p>2$,存在λ∗&gt;0 $\lambda ^*>0$使得对于每个λ∈(0,λ∗)$\lambda \in (0,\lambda ^*)$方程(0.1)有一个负能量的正解。进一步,利用改进的Clark定理,我们可以在不受λ $\lambda$约束的情况下,得到在L∞(Ω) $L^{\infty }(\Omega)$上收敛于零的负能量解序列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
157
审稿时长
4-8 weeks
期刊介绍: Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信