Differential Frequency Comparison of Conditionally and Unconditionally Spin-Squeezed States of an Optical Lattice Clock

IF 4.3 Q1 OPTICS
Deshui Yu, Xiaobo Xue, Jia Zhang, Shougang Zhang, Jingbiao Chen
{"title":"Differential Frequency Comparison of Conditionally and Unconditionally Spin-Squeezed States of an Optical Lattice Clock","authors":"Deshui Yu,&nbsp;Xiaobo Xue,&nbsp;Jia Zhang,&nbsp;Shougang Zhang,&nbsp;Jingbiao Chen","doi":"10.1002/qute.202400491","DOIUrl":null,"url":null,"abstract":"<p>Optical lattice clocks are the world's most accurate and stable timepieces. Thus far, the differential clock comparison has reached a stability limited by the quantum projection noise of uncorrelated atoms. Overcoming this limit relies on using spin squeezing, where quantum fluctuations of the collective spin undergo a strong suppression in one direction while being enhanced in the conjugation direction. The recent differential comparison of spin-squeezed clocks mainly employs multiple atomic clouds or sub-ensembles within one cloud, complicating the clock operation. Here, it is numerically investigated the differential comparison of conditionally and unconditionally spin-squeezed states of one lattice-trapped cloud of neutral <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow></mrow>\n <mn>171</mn>\n </msup>\n <mtext>Yb</mtext>\n </mrow>\n <annotation>$^{171}\\text{Yb}$</annotation>\n </semantics></math> atoms. The simulation results in a comparison stability of <span></span><math>\n <semantics>\n <mrow>\n <mn>3.5</mn>\n <mo>×</mo>\n <msup>\n <mn>10</mn>\n <mrow>\n <mo>−</mo>\n <mn>17</mn>\n </mrow>\n </msup>\n <mo>/</mo>\n <msqrt>\n <mi>τ</mi>\n </msqrt>\n </mrow>\n <annotation>$3.5\\times 10^{-17}/\\sqrt {\\tau }$</annotation>\n </semantics></math> at the averaging time <span></span><math>\n <semantics>\n <mi>τ</mi>\n <annotation>$\\tau$</annotation>\n </semantics></math> for <span></span><math>\n <semantics>\n <msup>\n <mn>10</mn>\n <mn>2</mn>\n </msup>\n <annotation>$10^{2}$</annotation>\n </semantics></math> atoms. The metrological gain reaches <span></span><math>\n <semantics>\n <mrow>\n <mo>−</mo>\n <mn>4.9</mn>\n </mrow>\n <annotation>$-4.9$</annotation>\n </semantics></math> dB, primarily limited by the decoherence induced by quantum jumps of intracavity probe photons during quantum non-demolition measurements. Besides the quantum precision enhancement, our scheme paves the way to using one spin squeezing protocol to appraise the other.</p>","PeriodicalId":72073,"journal":{"name":"Advanced quantum technologies","volume":"8 8","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced quantum technologies","FirstCategoryId":"1085","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/qute.202400491","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Optical lattice clocks are the world's most accurate and stable timepieces. Thus far, the differential clock comparison has reached a stability limited by the quantum projection noise of uncorrelated atoms. Overcoming this limit relies on using spin squeezing, where quantum fluctuations of the collective spin undergo a strong suppression in one direction while being enhanced in the conjugation direction. The recent differential comparison of spin-squeezed clocks mainly employs multiple atomic clouds or sub-ensembles within one cloud, complicating the clock operation. Here, it is numerically investigated the differential comparison of conditionally and unconditionally spin-squeezed states of one lattice-trapped cloud of neutral 171 Yb $^{171}\text{Yb}$ atoms. The simulation results in a comparison stability of 3.5 × 10 17 / τ $3.5\times 10^{-17}/\sqrt {\tau }$ at the averaging time τ $\tau$ for 10 2 $10^{2}$ atoms. The metrological gain reaches 4.9 $-4.9$ dB, primarily limited by the decoherence induced by quantum jumps of intracavity probe photons during quantum non-demolition measurements. Besides the quantum precision enhancement, our scheme paves the way to using one spin squeezing protocol to appraise the other.

Abstract Image

Abstract Image

Abstract Image

Abstract Image

光学晶格时钟的条件和无条件自旋压缩态的差频比较
光学格子钟是世界上最精确、最稳定的钟表。到目前为止,差分时钟比较已经达到了不相关原子的量子投影噪声所限制的稳定性。克服这一限制依赖于使用自旋压缩,其中集体自旋的量子涨落在一个方向上受到强烈抑制,而在共轭方向上得到增强。最近的自旋压缩时钟的差异比较主要采用多个原子云或一个原子云内的子集合,使时钟操作复杂化。本文用数值方法研究了中性171yb $^{171}\text{Yb}$原子晶格俘获云的条件自旋压缩态和无条件自旋压缩态的差异比较。模拟结果表明,在平均时间τ $\tau$处,比较稳定性为3.5 × 10−17 / τ $3.5\times 10^{-17}/\sqrt {\tau }$对于10 2个$10^{2}$原子。测量增益达到- 4.9 $-4.9$ dB,主要受限于在量子非拆除测量过程中腔内探针光子量子跳变引起的退相干。除了量子精度的提高外,我们的方案还为使用一种自旋压缩协议来评价另一种自旋压缩协议铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信