Real topological Hochschild homology of perfectoid rings

IF 1.1 2区 数学 Q2 MATHEMATICS
Jens Hornbostel, Doosung Park
{"title":"Real topological Hochschild homology of perfectoid rings","authors":"Jens Hornbostel,&nbsp;Doosung Park","doi":"10.1112/topo.70032","DOIUrl":null,"url":null,"abstract":"<p>We refine several results of Bhatt–Morrow–Scholze on <span></span><math>\n <semantics>\n <mi>THH</mi>\n <annotation>$\\mathrm{THH}$</annotation>\n </semantics></math> to real topological Hochschild homology (<span></span><math>\n <semantics>\n <mi>THR</mi>\n <annotation>$\\mathrm{THR}$</annotation>\n </semantics></math>). In particular, we compute <span></span><math>\n <semantics>\n <mi>THR</mi>\n <annotation>$\\mathrm{THR}$</annotation>\n </semantics></math> of perfectoid rings. This will be useful for establishing motivic filtrations on real topological Hochschild and cyclic homology of quasisyntomic rings. We also establish a real refinement of the Hochschild–Kostant–Rosenberg theorem.</p>","PeriodicalId":56114,"journal":{"name":"Journal of Topology","volume":"18 3","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Topology","FirstCategoryId":"100","ListUrlMain":"https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/topo.70032","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We refine several results of Bhatt–Morrow–Scholze on THH $\mathrm{THH}$ to real topological Hochschild homology ( THR $\mathrm{THR}$ ). In particular, we compute THR $\mathrm{THR}$ of perfectoid rings. This will be useful for establishing motivic filtrations on real topological Hochschild and cyclic homology of quasisyntomic rings. We also establish a real refinement of the Hochschild–Kostant–Rosenberg theorem.

Abstract Image

Abstract Image

Abstract Image

完美样环的实拓扑Hochschild同调
我们将bhat - morrow - scholze关于THH $\ mathm {THH}$的几个结果改进为实拓扑Hochschild同调(THR $\ mathm {THR}$)。特别地,我们计算了完美曲面环的THR $\ mathm {THR}$。这将有助于在拟同子环的实拓扑Hochschild和循环同调上建立动机过滤。我们还建立了Hochschild-Kostant-Rosenberg定理的一个真正的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Topology
Journal of Topology 数学-数学
CiteScore
2.00
自引率
9.10%
发文量
62
审稿时长
>12 weeks
期刊介绍: The Journal of Topology publishes papers of high quality and significance in topology, geometry and adjacent areas of mathematics. Interesting, important and often unexpected links connect topology and geometry with many other parts of mathematics, and the editors welcome submissions on exciting new advances concerning such links, as well as those in the core subject areas of the journal. The Journal of Topology was founded in 2008. It is published quarterly with articles published individually online prior to appearing in a printed issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信