Noncontact Young's Modulus Measurement Using a Laser Interferometry–Digital Microscopy System: From Manganese Steel to Polylactic Acid Composites

IF 1.2 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
Chunyan Sun, Bowen Zhang, Zhipeng Wang, Yunxuan Zou, Yuanchun Ma, Jin Bai
{"title":"Noncontact Young's Modulus Measurement Using a Laser Interferometry–Digital Microscopy System: From Manganese Steel to Polylactic Acid Composites","authors":"Chunyan Sun,&nbsp;Bowen Zhang,&nbsp;Zhipeng Wang,&nbsp;Yunxuan Zou,&nbsp;Yuanchun Ma,&nbsp;Jin Bai","doi":"10.1002/mop.70356","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>High-precision measurement of Young's modulus is essential for evaluating the mechanical properties of materials, yet traditional methods often exhibit high error rates and system complexity. This study presents a noncontact, fully digital sensor system that integrates Lloyd's mirror interferometry with digital microscopy imaging. The system employs a uniaxial stretching device and a Lloyd's mirror optical path to capture real-time interference fringe images, and utilizes a multi-algorithm fusion framework for accurate fringe centerline positioning. A MATLAB-based GUI enables one-click automated data processing. Experimental results show that the system measures the Young's modulus of manganese steel wire as 2.004 × 100 GPa with a relative uncertainty of 1.36%, outperforming CCD-based methods (relative error &gt; 4%). The Young's modulus measurements for pure aluminum wire, polylactic acid (PLA) composites, and aluminum alloy sheets are 0.776 × 100 GPa (relative uncertainty 2.63%), 3.016 × 100 GPa (relative uncertainty 1.19%), and 0.729 × 100 GPa (relative uncertainty 4.21%), respectively. Overall, the proposed system is a promising solution with broad engineering applicability for high-precision elastic property measurements under complex conditions owing to its applicability to both metallic and non-metallic materials.</p>\n </div>","PeriodicalId":18562,"journal":{"name":"Microwave and Optical Technology Letters","volume":"67 8","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microwave and Optical Technology Letters","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mop.70356","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

High-precision measurement of Young's modulus is essential for evaluating the mechanical properties of materials, yet traditional methods often exhibit high error rates and system complexity. This study presents a noncontact, fully digital sensor system that integrates Lloyd's mirror interferometry with digital microscopy imaging. The system employs a uniaxial stretching device and a Lloyd's mirror optical path to capture real-time interference fringe images, and utilizes a multi-algorithm fusion framework for accurate fringe centerline positioning. A MATLAB-based GUI enables one-click automated data processing. Experimental results show that the system measures the Young's modulus of manganese steel wire as 2.004 × 100 GPa with a relative uncertainty of 1.36%, outperforming CCD-based methods (relative error > 4%). The Young's modulus measurements for pure aluminum wire, polylactic acid (PLA) composites, and aluminum alloy sheets are 0.776 × 100 GPa (relative uncertainty 2.63%), 3.016 × 100 GPa (relative uncertainty 1.19%), and 0.729 × 100 GPa (relative uncertainty 4.21%), respectively. Overall, the proposed system is a promising solution with broad engineering applicability for high-precision elastic property measurements under complex conditions owing to its applicability to both metallic and non-metallic materials.

使用激光干涉-数字显微系统的非接触杨氏模量测量:从锰钢到聚乳酸复合材料
杨氏模量的高精度测量对于评估材料的机械性能至关重要,然而传统的方法往往表现出高错误率和系统复杂性。本研究提出了一种非接触式全数字传感器系统,该系统集成了劳埃德反射镜干涉测量和数字显微镜成像。该系统采用单轴拉伸装置和劳埃德反射镜光路捕获实时干涉条纹图像,并利用多算法融合框架进行精确的条纹中心线定位。基于matlab的GUI实现了一键式自动数据处理。实验结果表明,该系统测量的锰钢丝杨氏模量为2.004 × 100 GPa,相对不确定度为1.36%,优于基于ccd的方法(相对误差为4%)。纯铝丝、聚乳酸(PLA)复合材料和铝合金板的杨氏模量分别为0.776 × 100 GPa(相对不确定度2.63%)、3.016 × 100 GPa(相对不确定度1.19%)和0.729 × 100 GPa(相对不确定度4.21%)。总的来说,由于该系统适用于金属和非金属材料,因此在复杂条件下的高精度弹性性能测量中具有广泛的工程适用性,是一种很有前途的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Microwave and Optical Technology Letters
Microwave and Optical Technology Letters 工程技术-工程:电子与电气
CiteScore
3.40
自引率
20.00%
发文量
371
审稿时长
4.3 months
期刊介绍: Microwave and Optical Technology Letters provides quick publication (3 to 6 month turnaround) of the most recent findings and achievements in high frequency technology, from RF to optical spectrum. The journal publishes original short papers and letters on theoretical, applied, and system results in the following areas. - RF, Microwave, and Millimeter Waves - Antennas and Propagation - Submillimeter-Wave and Infrared Technology - Optical Engineering All papers are subject to peer review before publication
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信