Asymptotic stability of the stationary solution to the three-dimensional model of compressible reactive fluid

IF 0.8 3区 数学 Q2 MATHEMATICS
Hang Li, Qiwei Wu
{"title":"Asymptotic stability of the stationary solution to the three-dimensional model of compressible reactive fluid","authors":"Hang Li,&nbsp;Qiwei Wu","doi":"10.1002/mana.70007","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we consider the asymptotic behavior of solutions to the Cauchy problem for the three-dimensional model of compressible reactive fluid, which can be described by a compressible Navier–Stokes type system with potential external force. First, the existence of the stationary solution is shown in the case that the external force is small enough. Next, making use of the energy method, we prove that the stationary solution is time-asymptotically stable provided that the external force and the initial perturbation are sufficiently small. Finally, we obtain the time-decay rate of the solution toward the stationary solution by combining the <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>L</mi>\n <mi>p</mi>\n </msup>\n <mo>−</mo>\n <msup>\n <mi>L</mi>\n <mi>q</mi>\n </msup>\n </mrow>\n <annotation>$L^{p}-L^{q}$</annotation>\n </semantics></math> estimates for the corresponding linear problem and the energy estimates for the nonlinear system.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 8","pages":"2596-2625"},"PeriodicalIF":0.8000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.70007","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider the asymptotic behavior of solutions to the Cauchy problem for the three-dimensional model of compressible reactive fluid, which can be described by a compressible Navier–Stokes type system with potential external force. First, the existence of the stationary solution is shown in the case that the external force is small enough. Next, making use of the energy method, we prove that the stationary solution is time-asymptotically stable provided that the external force and the initial perturbation are sufficiently small. Finally, we obtain the time-decay rate of the solution toward the stationary solution by combining the L p L q $L^{p}-L^{q}$ estimates for the corresponding linear problem and the energy estimates for the nonlinear system.

可压缩反应流体三维模型稳态解的渐近稳定性
本文考虑了可压缩反应流体三维模型Cauchy问题解的渐近性态,该模型可以用具有潜在外力的可压缩Navier-Stokes型系统来描述。首先,在外力足够小的情况下,证明了静解的存在性。其次,利用能量法证明了在外力和初始扰动足够小的情况下,平稳解是时间渐近稳定的。最后,结合相应线性问题的L p−L q $L^{p}-L^{q}$估计和非线性系统的能量估计,得到了解向平稳解的时间衰减率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
157
审稿时长
4-8 weeks
期刊介绍: Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信