下载PDF
{"title":"On the completeness of the space \n \n \n O\n C\n \n $\\mathcal {O}_C$","authors":"Michael Kunzinger, Norbert Ortner","doi":"10.1002/mana.70013","DOIUrl":null,"url":null,"abstract":"<p>We explicitly prove the compact regularity of the <span></span><math>\n <semantics>\n <mi>LF</mi>\n <annotation>$\\mathcal {LF}$</annotation>\n </semantics></math>-space of double sequences <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>lim</mi>\n <mrow>\n <mi>k</mi>\n <mo>→</mo>\n </mrow>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>s</mi>\n <mover>\n <mo>⊗</mo>\n <mo>̂</mo>\n </mover>\n <msub>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>ℓ</mi>\n <mi>p</mi>\n </msup>\n <mo>)</mo>\n </mrow>\n <mi>k</mi>\n </msub>\n <mo>)</mo>\n </mrow>\n <mo>≅</mo>\n <msub>\n <mi>lim</mi>\n <mrow>\n <mi>k</mi>\n <mo>→</mo>\n </mrow>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>s</mi>\n <mover>\n <mo>⊗</mo>\n <mo>̂</mo>\n </mover>\n <msub>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>c</mi>\n <mn>0</mn>\n </msub>\n <mo>)</mo>\n </mrow>\n <mrow>\n <mo>−</mo>\n <mi>k</mi>\n </mrow>\n </msub>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$ {\\lim _{k\\rightarrow }} (s\\widehat{\\otimes }(\\ell ^p)_{k}) \\cong {\\lim _{k\\rightarrow }}(s\\widehat{\\otimes }(c_0)_{-k})$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <mn>1</mn>\n <mo>≤</mo>\n <mi>p</mi>\n <mo>≤</mo>\n <mi>∞</mi>\n </mrow>\n <annotation>$1\\le p\\le \\infty$</annotation>\n </semantics></math>. As a consequence, we obtain that the spaces of slowly and uniformly slowly increasing <span></span><math>\n <semantics>\n <msup>\n <mi>C</mi>\n <mi>∞</mi>\n </msup>\n <annotation>$C^\\infty$</annotation>\n </semantics></math>-functions <span></span><math>\n <semantics>\n <msub>\n <mi>O</mi>\n <mi>M</mi>\n </msub>\n <annotation>$\\mathcal {O}_M$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <msub>\n <mi>O</mi>\n <mi>C</mi>\n </msub>\n <annotation>$\\mathcal {O}_C$</annotation>\n </semantics></math>, respectively, are ultrabornological and complete. Furthermore, we prove that <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>lim</mi>\n <mrow>\n <mi>k</mi>\n <mo>→</mo>\n </mrow>\n </msub>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>E</mi>\n <mi>k</mi>\n </msub>\n <msub>\n <mover>\n <mo>⊗</mo>\n <mo>̂</mo>\n </mover>\n <mi>ι</mi>\n </msub>\n <mi>F</mi>\n <mo>)</mo>\n </mrow>\n <mo>=</mo>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>lim</mi>\n <mrow>\n <mi>k</mi>\n <mo>→</mo>\n </mrow>\n </msub>\n <msub>\n <mi>E</mi>\n <mi>k</mi>\n </msub>\n <mo>)</mo>\n </mrow>\n <msub>\n <mover>\n <mo>⊗</mo>\n <mo>̂</mo>\n </mover>\n <mi>ι</mi>\n </msub>\n <mi>F</mi>\n </mrow>\n <annotation>$ {\\lim _{k\\rightarrow }}(E_k\\widehat{\\otimes }_\\iota F) = ({\\lim _{k\\rightarrow }} E_k) \\widehat{\\otimes }_\\iota F$</annotation>\n </semantics></math> if the inductive limit <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>lim</mi>\n <mrow>\n <mi>k</mi>\n <mo>→</mo>\n </mrow>\n </msub>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>E</mi>\n <mi>k</mi>\n </msub>\n <msub>\n <mover>\n <mo>⊗</mo>\n <mo>̂</mo>\n </mover>\n <mi>ι</mi>\n </msub>\n <mi>F</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$ {\\lim _{k\\rightarrow }}(E_k \\widehat{\\otimes }_\\iota F)$</annotation>\n </semantics></math> is compactly regular.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 8","pages":"2740-2748"},"PeriodicalIF":0.8000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mana.70013","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.70013","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
引用
批量引用
Abstract
We explicitly prove the compact regularity of the
LF
$\mathcal {LF}$
-space of double sequences
lim
k
→
(
s
⊗
̂
(
ℓ
p
)
k
)
≅
lim
k
→
(
s
⊗
̂
(
c
0
)
−
k
)
$ {\lim _{k\rightarrow }} (s\widehat{\otimes }(\ell ^p)_{k}) \cong {\lim _{k\rightarrow }}(s\widehat{\otimes }(c_0)_{-k})$
,
1
≤
p
≤
∞
$1\le p\le \infty$
. As a consequence, we obtain that the spaces of slowly and uniformly slowly increasing
C
∞
$C^\infty$
-functions
O
M
$\mathcal {O}_M$
and
O
C
$\mathcal {O}_C$
, respectively, are ultrabornological and complete. Furthermore, we prove that
lim
k
→
(
E
k
⊗
̂
ι
F
)
=
(
lim
k
→
E
k
)
⊗
̂
ι
F
$ {\lim _{k\rightarrow }}(E_k\widehat{\otimes }_\iota F) = ({\lim _{k\rightarrow }} E_k) \widehat{\otimes }_\iota F$
if the inductive limit
lim
k
→
(
E
k
⊗
̂
ι
F
)
$ {\lim _{k\rightarrow }}(E_k \widehat{\otimes }_\iota F)$
is compactly regular.
空间O C$ \mathcal {O}_C$的完备性
明确证明了重序列lim k→(s)⊗的LF $\mathcal {LF}$ -空间的紧致正则性n (p) k) = limK→(s)⊗(c0)−k) $ {\lim _{k\rightarrow }} (s\widehat{\otimes }(\ell ^p)_{k}) \cong {\lim _{k\rightarrow }}(s\widehat{\otimes }(c_0)_{-k})$;1≤p≤∞$1\le p\le \infty$。因此,得到了C∞缓慢一致缓慢递增$C^\infty$ -函数O M $\mathcal {O}_M$和O C的空间$\mathcal {O}_C$分别是超声和完整的。此外,我们证明了lim k→(E k⊗kι F) = (lim k→E k)⊗ν ι F $ {\lim _{k\rightarrow }}(E_k\widehat{\otimes }_\iota F) = ({\lim _{k\rightarrow }} E_k) \widehat{\otimes }_\iota F$如果归纳极限lim k→(E k⊗ι F)$ {\lim _{k\rightarrow }}(E_k \widehat{\otimes }_\iota F)$是非常规则的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。