On asymptotically almost periodic mild solutions for wave equations on the whole space

IF 0.8 3区 数学 Q2 MATHEMATICS
Le The Sac, Pham Truong Xuan
{"title":"On asymptotically almost periodic mild solutions for wave equations on the whole space","authors":"Le The Sac,&nbsp;Pham Truong Xuan","doi":"10.1002/mana.70010","DOIUrl":null,"url":null,"abstract":"<p>We study the existence, uniqueness and polynomial stability of forward asymptotically almost periodic (AAP-) mild solutions for the wave equation with a singular potential on the whole space <span></span><math>\n <semantics>\n <msup>\n <mi>R</mi>\n <mi>n</mi>\n </msup>\n <annotation>$\\mathbb {R}^n$</annotation>\n </semantics></math> in a framework of weak-<span></span><math>\n <semantics>\n <msup>\n <mi>L</mi>\n <mi>p</mi>\n </msup>\n <annotation>$L^p$</annotation>\n </semantics></math> spaces. First, we use a Yamazaki-type estimate for wave groups on Lorentz spaces to establish the global well-posedness of bounded mild solutions for the corresponding linear wave equations. Then, we provide a Massera-type principle which guarantees the existence of AAP-mild solutions for linear wave equations. Using the results of linear wave equations and fixed point arguments we establish the well-posedness of such solutions for semilinear wave equations. Finally, we obtain a polynomial stability for mild solutions by employing dispersive estimates.</p>","PeriodicalId":49853,"journal":{"name":"Mathematische Nachrichten","volume":"298 8","pages":"2675-2690"},"PeriodicalIF":0.8000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Nachrichten","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.70010","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study the existence, uniqueness and polynomial stability of forward asymptotically almost periodic (AAP-) mild solutions for the wave equation with a singular potential on the whole space R n $\mathbb {R}^n$ in a framework of weak- L p $L^p$ spaces. First, we use a Yamazaki-type estimate for wave groups on Lorentz spaces to establish the global well-posedness of bounded mild solutions for the corresponding linear wave equations. Then, we provide a Massera-type principle which guarantees the existence of AAP-mild solutions for linear wave equations. Using the results of linear wave equations and fixed point arguments we establish the well-posedness of such solutions for semilinear wave equations. Finally, we obtain a polynomial stability for mild solutions by employing dispersive estimates.

全空间波动方程的渐近概周期温和解
在弱- L p$ L^p$空间框架下,研究了具有奇异势的波动方程在整个空间R n$ \mathbb {R}^n$上的正渐近概周期(AAP-)温和解的存在性、唯一性和多项式稳定性。首先,我们利用Lorentz空间上波群的yamazaki型估计,建立了相应线性波动方程有界温和解的全局适定性。然后,我们给出了保证线性波动方程aap -温和解存在的massera型原理。利用线性波动方程的结果和不动点参数,我们建立了这种半线性波动方程解的适定性。最后,我们利用色散估计得到了温和解的多项式稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
157
审稿时长
4-8 weeks
期刊介绍: Mathematische Nachrichten - Mathematical News publishes original papers on new results and methods that hold prospect for substantial progress in mathematics and its applications. All branches of analysis, algebra, number theory, geometry and topology, flow mechanics and theoretical aspects of stochastics are given special emphasis. Mathematische Nachrichten is indexed/abstracted in Current Contents/Physical, Chemical and Earth Sciences; Mathematical Review; Zentralblatt für Mathematik; Math Database on STN International, INSPEC; Science Citation Index
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信