Differentiability of Limit Shapes in Continuous First Passage Percolation Models

IF 1.2 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Yuri Bakhtin, Douglas Dow
{"title":"Differentiability of Limit Shapes in Continuous First Passage Percolation Models","authors":"Yuri Bakhtin,&nbsp;Douglas Dow","doi":"10.1007/s10955-025-03498-7","DOIUrl":null,"url":null,"abstract":"<div><p>We introduce and study a class of abstract continuous action minimization problems that generalize continuous first and last passage percolation. In this class of models a limit shape exists. Our main result provides a framework under which that limit shape can be shown to be differentiable. We then describe examples of continuous first passage percolation models that fit into this framework. The first example is of a family of Riemannian first passage percolation models and the second is a discrete time model based on Poissonian points.</p></div>","PeriodicalId":667,"journal":{"name":"Journal of Statistical Physics","volume":"192 8","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10955-025-03498-7","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce and study a class of abstract continuous action minimization problems that generalize continuous first and last passage percolation. In this class of models a limit shape exists. Our main result provides a framework under which that limit shape can be shown to be differentiable. We then describe examples of continuous first passage percolation models that fit into this framework. The first example is of a family of Riemannian first passage percolation models and the second is a discrete time model based on Poissonian points.

连续第一通道渗流模型极限形状的可微性
引入并研究了一类抽象的连续作用最小化问题,该问题推广了连续首末道渗流问题。在这类模型中存在一个极限形状。我们的主要结果提供了一个框架,在这个框架下极限形状可以被证明是可微的。然后,我们描述了适合此框架的连续第一通道渗透模型的示例。第一个例子是一类黎曼第一通道渗流模型,第二个例子是一个基于泊松点的离散时间模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Statistical Physics
Journal of Statistical Physics 物理-物理:数学物理
CiteScore
3.10
自引率
12.50%
发文量
152
审稿时长
3-6 weeks
期刊介绍: The Journal of Statistical Physics publishes original and invited review papers in all areas of statistical physics as well as in related fields concerned with collective phenomena in physical systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信