Dragan Manasijević, Ivana Marković, Nicanor Cimpoesu, Romeu Chelariu, Uroš Stamenković, Ljubiša Balanović, Milan Gorgievski
{"title":"Thermal Properties and Microstructure Evolution of the as-cast and Annealed Al–Cu–Si Eutectic Alloy","authors":"Dragan Manasijević, Ivana Marković, Nicanor Cimpoesu, Romeu Chelariu, Uroš Stamenković, Ljubiša Balanović, Milan Gorgievski","doi":"10.1007/s10765-025-03623-4","DOIUrl":null,"url":null,"abstract":"<div><p>The Al–28%Cu–6%Si (mass%) eutectic alloy represents a possible high-temperature phase change material (PCM) for latent heat thermal energy storage (LHTES). In this paper, its microstructural characteristics and thermal properties were examined in the as-cast and annealed conditions using scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), differential scanning calorimetry (DSC), and light flash method. The microstructure of the studied alloy consists of (Al) solid solution phase, θ<i>-</i>Al<sub>2</sub>Cu intermetallic phase, and (Si) phase. The annealing at 450°C for 50 h led to significant changes in the morphology of the θ<i>-</i>Al<sub>2</sub>Cu and (Si) eutectic phases. The temperature dependences of thermal diffusivity and thermal conductivity were investigated within the temperature range from 25 to 400 °C. It was found that the thermal diffusivity and thermal conductivity of the annealed alloy are considerably higher than that of the as-cast alloy at temperatures lower than 300 °C. With increasing temperature, due to changes in the microstructure of the as-cast alloy, these differences decrease and finally diminish at 400 °C. The measured eutectic temperature is 522.3 °C and latent heat of melting is 358.3 Jg<sup>-1</sup>. The findings suggest that the Al–Cu–Si eutectic alloy shows good potential for use in phase change energy storage technologies.</p></div>","PeriodicalId":598,"journal":{"name":"International Journal of Thermophysics","volume":"46 10","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermophysics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10765-025-03623-4","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The Al–28%Cu–6%Si (mass%) eutectic alloy represents a possible high-temperature phase change material (PCM) for latent heat thermal energy storage (LHTES). In this paper, its microstructural characteristics and thermal properties were examined in the as-cast and annealed conditions using scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), differential scanning calorimetry (DSC), and light flash method. The microstructure of the studied alloy consists of (Al) solid solution phase, θ-Al2Cu intermetallic phase, and (Si) phase. The annealing at 450°C for 50 h led to significant changes in the morphology of the θ-Al2Cu and (Si) eutectic phases. The temperature dependences of thermal diffusivity and thermal conductivity were investigated within the temperature range from 25 to 400 °C. It was found that the thermal diffusivity and thermal conductivity of the annealed alloy are considerably higher than that of the as-cast alloy at temperatures lower than 300 °C. With increasing temperature, due to changes in the microstructure of the as-cast alloy, these differences decrease and finally diminish at 400 °C. The measured eutectic temperature is 522.3 °C and latent heat of melting is 358.3 Jg-1. The findings suggest that the Al–Cu–Si eutectic alloy shows good potential for use in phase change energy storage technologies.
期刊介绍:
International Journal of Thermophysics serves as an international medium for the publication of papers in thermophysics, assisting both generators and users of thermophysical properties data. This distinguished journal publishes both experimental and theoretical papers on thermophysical properties of matter in the liquid, gaseous, and solid states (including soft matter, biofluids, and nano- and bio-materials), on instrumentation and techniques leading to their measurement, and on computer studies of model and related systems. Studies in all ranges of temperature, pressure, wavelength, and other relevant variables are included.