Jean-Claude Carret, Kevin Bilodeau, Morteza Rezaeizadeh Herozi, Lucas Babadopulos
{"title":"Effects of air void content and back‑calculation techniques on bituminous mixture modulus via impact resonance","authors":"Jean-Claude Carret, Kevin Bilodeau, Morteza Rezaeizadeh Herozi, Lucas Babadopulos","doi":"10.1617/s11527-025-02734-6","DOIUrl":null,"url":null,"abstract":"<div><p>This study evaluates the effect of back-calculation methods and air void content on the complex modulus of bituminous mixtures using impact resonance tests (IRT). Non-destructive IRT were performed on disk-shaped specimens of hot mix asphalt (HMA) at − 20 °C and + 23 °C to determine their resonance frequencies, which are critical for their viscoelastic characterization. Both an analytical method and a numerical back-calculation method were utilized to determine the complex modulus (dynamic modulus and phase angle) of the specimens based on IRT data. Both analytical and numerical methods yielded consistent dynamic modulus values. At − 20 °C, they ranged from 25,000 to 40,000 MPa. At room temperature, values were between 10,000 and 20,000 MPa. However, the two methods differed in their phase angle estimates, especially at higher temperatures, with discrepancies ranging from − 6° to + 3°. The study identifies limitations in current numerical back-calculation techniques, particularly regarding damping estimation, and suggests improvements in optimization procedures. The results also highlight that air void content significantly affects HMA stiffness (about 1000 MPa per % air void content), with higher air voids reducing the dynamic modulus, particularly at lower temperatures. This research advances the knowledge on application of IRT for characterizing bituminous mixtures, highlighting its potential for cost-effective characterization of HMA properties and fostering future standardization.</p></div>","PeriodicalId":691,"journal":{"name":"Materials and Structures","volume":"58 6","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials and Structures","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1617/s11527-025-02734-6","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study evaluates the effect of back-calculation methods and air void content on the complex modulus of bituminous mixtures using impact resonance tests (IRT). Non-destructive IRT were performed on disk-shaped specimens of hot mix asphalt (HMA) at − 20 °C and + 23 °C to determine their resonance frequencies, which are critical for their viscoelastic characterization. Both an analytical method and a numerical back-calculation method were utilized to determine the complex modulus (dynamic modulus and phase angle) of the specimens based on IRT data. Both analytical and numerical methods yielded consistent dynamic modulus values. At − 20 °C, they ranged from 25,000 to 40,000 MPa. At room temperature, values were between 10,000 and 20,000 MPa. However, the two methods differed in their phase angle estimates, especially at higher temperatures, with discrepancies ranging from − 6° to + 3°. The study identifies limitations in current numerical back-calculation techniques, particularly regarding damping estimation, and suggests improvements in optimization procedures. The results also highlight that air void content significantly affects HMA stiffness (about 1000 MPa per % air void content), with higher air voids reducing the dynamic modulus, particularly at lower temperatures. This research advances the knowledge on application of IRT for characterizing bituminous mixtures, highlighting its potential for cost-effective characterization of HMA properties and fostering future standardization.
期刊介绍:
Materials and Structures, the flagship publication of the International Union of Laboratories and Experts in Construction Materials, Systems and Structures (RILEM), provides a unique international and interdisciplinary forum for new research findings on the performance of construction materials. A leader in cutting-edge research, the journal is dedicated to the publication of high quality papers examining the fundamental properties of building materials, their characterization and processing techniques, modeling, standardization of test methods, and the application of research results in building and civil engineering. Materials and Structures also publishes comprehensive reports prepared by the RILEM’s technical committees.