Fiber modelling approach for seismic analysis of flexure-controlled rc columns with ribbed bars calibrated on unidirectional experimental tests

IF 4.1 2区 工程技术 Q2 ENGINEERING, GEOLOGICAL
Mariano Di Domenico, Francesca Barbagallo, Marco Terrenzi, Cristina Cantagallo, Paolo Ricci, Guido Camata, Edoardo M. Marino, Enrico Spacone, Gerardo M. Verderame
{"title":"Fiber modelling approach for seismic analysis of flexure-controlled rc columns with ribbed bars calibrated on unidirectional experimental tests","authors":"Mariano Di Domenico,&nbsp;Francesca Barbagallo,&nbsp;Marco Terrenzi,&nbsp;Cristina Cantagallo,&nbsp;Paolo Ricci,&nbsp;Guido Camata,&nbsp;Edoardo M. Marino,&nbsp;Enrico Spacone,&nbsp;Gerardo M. Verderame","doi":"10.1007/s10518-025-02211-z","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, a fiber-section model for the seismic analysis of ductile reinforced concrete columns with ribbed bars is proposed. The model is based on the simulation of the results of uniaxial-bending experimental tests and is built by using OpenSees software. Material models are proposed to replicate the response of cover concrete, of core concrete, and of steel rebars. A modelling strategy already proposed in the literature is incorporated in the proposed model to account for strain penetration effects. Correction coefficients are calibrated to account for the additional confinement provided to the end sections of structural members by other structural members, such as foundation elements. Literature formulations are applied to account for the fracture in tension of longitudinal rebars after buckling in compression. The proposed model can be adopted for the seismic nonlinear static and dynamic analysis of reinforced concrete structures.</p></div>","PeriodicalId":9364,"journal":{"name":"Bulletin of Earthquake Engineering","volume":"23 10","pages":"3953 - 3984"},"PeriodicalIF":4.1000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Earthquake Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10518-025-02211-z","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a fiber-section model for the seismic analysis of ductile reinforced concrete columns with ribbed bars is proposed. The model is based on the simulation of the results of uniaxial-bending experimental tests and is built by using OpenSees software. Material models are proposed to replicate the response of cover concrete, of core concrete, and of steel rebars. A modelling strategy already proposed in the literature is incorporated in the proposed model to account for strain penetration effects. Correction coefficients are calibrated to account for the additional confinement provided to the end sections of structural members by other structural members, such as foundation elements. Literature formulations are applied to account for the fracture in tension of longitudinal rebars after buckling in compression. The proposed model can be adopted for the seismic nonlinear static and dynamic analysis of reinforced concrete structures.

Abstract Image

Abstract Image

单向试验标定带肋钢筋混凝土挠曲控制柱抗震分析的纤维建模方法
本文提出了钢筋混凝土带肋延性柱抗震分析的纤维截面模型。该模型基于单轴弯曲试验结果的仿真,并利用OpenSees软件建立。提出了材料模型来复制覆盖混凝土、核心混凝土和钢筋的响应。已经在文献中提出的建模策略被纳入到提出的模型中,以考虑应变渗透效应。校正系数经过校准,以考虑由其他结构构件(如基础构件)提供给结构构件端部的额外约束。采用文献公式来解释纵向钢筋在压缩屈曲后的拉伸断裂。该模型可用于钢筋混凝土结构的地震非线性静动力分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bulletin of Earthquake Engineering
Bulletin of Earthquake Engineering 工程技术-地球科学综合
CiteScore
8.90
自引率
19.60%
发文量
263
审稿时长
7.5 months
期刊介绍: Bulletin of Earthquake Engineering presents original, peer-reviewed papers on research related to the broad spectrum of earthquake engineering. The journal offers a forum for presentation and discussion of such matters as European damaging earthquakes, new developments in earthquake regulations, and national policies applied after major seismic events, including strengthening of existing buildings. Coverage includes seismic hazard studies and methods for mitigation of risk; earthquake source mechanism and strong motion characterization and their use for engineering applications; geological and geotechnical site conditions under earthquake excitations; cyclic behavior of soils; analysis and design of earth structures and foundations under seismic conditions; zonation and microzonation methodologies; earthquake scenarios and vulnerability assessments; earthquake codes and improvements, and much more. This is the Official Publication of the European Association for Earthquake Engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信