Cognitive Radio Spectrum Sensing on the Edge: A Quantization-Aware Deep Learning Approach

IF 4.4 3区 计算机科学 Q2 TELECOMMUNICATIONS
Hamza A. Abushahla;Dara Varam;Mohamed I. AlHajri
{"title":"Cognitive Radio Spectrum Sensing on the Edge: A Quantization-Aware Deep Learning Approach","authors":"Hamza A. Abushahla;Dara Varam;Mohamed I. AlHajri","doi":"10.1109/LCOMM.2025.3582680","DOIUrl":null,"url":null,"abstract":"Wideband spectrum sensing demands ultra-low latency and high accuracy to detect spectrum holes, yet deploying deep learning (DL)-based models on resource-constrained edge devices is challenging due to high computational costs. This letter proposes quantization-aware training (QAT) to optimize DL-based spectrum sensing models for low-power, low-memory deployment with fast inference. Using a hardware-oriented approach and data-driven quantization scaling, the models retain near-identical performance across varying signal-to-noise ratio (SNR) levels. Real-time deployment on the Sony Spresense shows 72% model size reduction, 51% faster inference, and 7% lower power consumption, confirming the feasibility of QAT-optimized models for spectrum sensing on the edge.","PeriodicalId":13197,"journal":{"name":"IEEE Communications Letters","volume":"29 8","pages":"1988-1992"},"PeriodicalIF":4.4000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Communications Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11048877/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Wideband spectrum sensing demands ultra-low latency and high accuracy to detect spectrum holes, yet deploying deep learning (DL)-based models on resource-constrained edge devices is challenging due to high computational costs. This letter proposes quantization-aware training (QAT) to optimize DL-based spectrum sensing models for low-power, low-memory deployment with fast inference. Using a hardware-oriented approach and data-driven quantization scaling, the models retain near-identical performance across varying signal-to-noise ratio (SNR) levels. Real-time deployment on the Sony Spresense shows 72% model size reduction, 51% faster inference, and 7% lower power consumption, confirming the feasibility of QAT-optimized models for spectrum sensing on the edge.
边缘认知无线电频谱感知:量化感知深度学习方法
宽带频谱传感需要超低延迟和高精度来检测频谱漏洞,但由于计算成本高,在资源受限的边缘设备上部署基于深度学习(DL)的模型具有挑战性。这封信提出量化感知训练(QAT)来优化基于dl的频谱感知模型,用于低功耗,低内存部署和快速推理。使用面向硬件的方法和数据驱动的量化缩放,模型在不同的信噪比(SNR)水平上保持几乎相同的性能。在索尼Spresense上的实时部署显示,模型尺寸缩小了72%,推理速度提高了51%,功耗降低了7%,这证实了qat优化模型用于边缘频谱传感的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Communications Letters
IEEE Communications Letters 工程技术-电信学
CiteScore
8.10
自引率
7.30%
发文量
590
审稿时长
2.8 months
期刊介绍: The IEEE Communications Letters publishes short papers in a rapid publication cycle on advances in the state-of-the-art of communication over different media and channels including wire, underground, waveguide, optical fiber, and storage channels. Both theoretical contributions (including new techniques, concepts, and analyses) and practical contributions (including system experiments and prototypes, and new applications) are encouraged. This journal focuses on the physical layer and the link layer of communication systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信