High-Power Multi-Wavelength Laser Array With Uniform Spacing Based on Asymmetric Equivalent π Phase Shift

IF 2.1 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Yuxin Ma;Yong Zhao;Zhenxing Sun;Ziming Hong;Cheng Peng;Zhenzhen Xu;Xin Wang;Lianping Hou;Yuechun Shi;Pu Li;Yuncai Wang;Xiangfei Chen
{"title":"High-Power Multi-Wavelength Laser Array With Uniform Spacing Based on Asymmetric Equivalent π Phase Shift","authors":"Yuxin Ma;Yong Zhao;Zhenxing Sun;Ziming Hong;Cheng Peng;Zhenzhen Xu;Xin Wang;Lianping Hou;Yuechun Shi;Pu Li;Yuncai Wang;Xiangfei Chen","doi":"10.1109/JQE.2025.3577557","DOIUrl":null,"url":null,"abstract":"We experimentally demonstrated a high-power 16-wavelength DFB laser array with 1.6 nm (200 GHz) channel spacing based on the asymmetric equivalent <inline-formula> <tex-math>$\\pi $ </tex-math></inline-formula> phase shift (<inline-formula> <tex-math>$\\pi $ </tex-math></inline-formula>-EPS). The <inline-formula> <tex-math>$\\pi $ </tex-math></inline-formula>-EPS is positioned at 1/5 of the laser cavity length near the facet with a high-reflection (HR) coating, enhancing the yield of single longitudinal mode (SLM) operation. The measured channel spacing is 1.6 nm <inline-formula> <tex-math>$\\pm ~0.1$ </tex-math></inline-formula> nm at a bias current of 250 mA. The array’s output power exceeds 120 mW for each channel at 400 mA. The SLM performance is achieved, with side mode suppression ratios (SMSRs) greater than 50 dB at room temperature. Furthermore, at 70 mA bias current, the relative intensity noise (RIN) remains below -160 dB/Hz. These results suggest that this laser array holds significant potential for large-scale silicon photonics applications. Therefore, the proposed laser array will be beneficial to the applications of large-scale silicon photonics.","PeriodicalId":13200,"journal":{"name":"IEEE Journal of Quantum Electronics","volume":"61 4","pages":"1-8"},"PeriodicalIF":2.1000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Quantum Electronics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11028121/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

We experimentally demonstrated a high-power 16-wavelength DFB laser array with 1.6 nm (200 GHz) channel spacing based on the asymmetric equivalent $\pi $ phase shift ( $\pi $ -EPS). The $\pi $ -EPS is positioned at 1/5 of the laser cavity length near the facet with a high-reflection (HR) coating, enhancing the yield of single longitudinal mode (SLM) operation. The measured channel spacing is 1.6 nm $\pm ~0.1$ nm at a bias current of 250 mA. The array’s output power exceeds 120 mW for each channel at 400 mA. The SLM performance is achieved, with side mode suppression ratios (SMSRs) greater than 50 dB at room temperature. Furthermore, at 70 mA bias current, the relative intensity noise (RIN) remains below -160 dB/Hz. These results suggest that this laser array holds significant potential for large-scale silicon photonics applications. Therefore, the proposed laser array will be beneficial to the applications of large-scale silicon photonics.
基于非对称等效π相移的均匀间距高功率多波长激光阵列
基于非对称等效$\pi $相移($\pi $ -EPS),实验证明了具有1.6 nm (200 GHz)通道间距的高功率16波长DFB激光阵列。$\pi $ -EPS位于激光腔长度的1/5处,靠近具有高反射(HR)涂层的facet,提高了单纵向模式(SLM)操作的产量。在偏置电流为250 mA时,测量到的通道间距为1.6 nm ~0.1 nm。该阵列在400毫安时每个通道的输出功率超过120毫瓦。实现了SLM性能,在室温下侧模抑制比(SMSRs)大于50 dB。此外,在70 mA偏置电流下,相对强度噪声(RIN)保持在-160 dB/Hz以下。这些结果表明,这种激光阵列具有大规模硅光子学应用的巨大潜力。因此,所提出的激光阵列将有利于大规模硅光子学的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Journal of Quantum Electronics
IEEE Journal of Quantum Electronics 工程技术-工程:电子与电气
CiteScore
4.70
自引率
4.00%
发文量
99
审稿时长
3.0 months
期刊介绍: The IEEE Journal of Quantum Electronics is dedicated to the publication of manuscripts reporting novel experimental or theoretical results in the broad field of the science and technology of quantum electronics. The Journal comprises original contributions, both regular papers and letters, describing significant advances in the understanding of quantum electronics phenomena or the demonstration of new devices, systems, or applications. Manuscripts reporting new developments in systems and applications must emphasize quantum electronics principles or devices. The scope of JQE encompasses the generation, propagation, detection, and application of coherent electromagnetic radiation having wavelengths below one millimeter (i.e., in the submillimeter, infrared, visible, ultraviolet, etc., regions). Whether the focus of a manuscript is a quantum-electronic device or phenomenon, the critical factor in the editorial review of a manuscript is the potential impact of the results presented on continuing research in the field or on advancing the technological base of quantum electronics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信