Low Profile Enhanced Bandwidth Optically Transparent and Semi-Transparent Meshed Patch Antennas for Integration With Solar Cells

IF 3.6 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Shirin Ramezanzadehyazdi;Dustin Isleifson;Philip Ferguson;Lotfollah Shafai;Cyrus Shafai
{"title":"Low Profile Enhanced Bandwidth Optically Transparent and Semi-Transparent Meshed Patch Antennas for Integration With Solar Cells","authors":"Shirin Ramezanzadehyazdi;Dustin Isleifson;Philip Ferguson;Lotfollah Shafai;Cyrus Shafai","doi":"10.1109/OJAP.2025.3569162","DOIUrl":null,"url":null,"abstract":"This paper presents three novel low-profile optically transparent meshed patch antennas with enhanced bandwidth that can be fully integrated into a solar cell. The bandwidth enhancement was achieved by applying a stacking technique to two square meshed patches with close resonance frequencies. The first antenna used fused silica glass substrates for both lower and upper dielectric layers to maintain transparency and high integrability with the solar cells. The antenna resonated at 2.43 GHz and exhibited an impedance bandwidth of 6.2% and a peak gain of 6.5 dBi. In the second design, a polymer layer replaced the upper glass substrate and was partially removed to reduce the antenna mass. 65% mass reduction was achieved at the expense of lower efficiency. To further reduce the mass, the polymer layer was perforated. The perforated design resulted in a lightweight stacked meshed patch antenna with a normal transparency of 94%, which can be placed directly on top of the solar cells without affecting the cell performance.","PeriodicalId":34267,"journal":{"name":"IEEE Open Journal of Antennas and Propagation","volume":"6 4","pages":"1237-1247"},"PeriodicalIF":3.6000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10999081","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Antennas and Propagation","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10999081/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents three novel low-profile optically transparent meshed patch antennas with enhanced bandwidth that can be fully integrated into a solar cell. The bandwidth enhancement was achieved by applying a stacking technique to two square meshed patches with close resonance frequencies. The first antenna used fused silica glass substrates for both lower and upper dielectric layers to maintain transparency and high integrability with the solar cells. The antenna resonated at 2.43 GHz and exhibited an impedance bandwidth of 6.2% and a peak gain of 6.5 dBi. In the second design, a polymer layer replaced the upper glass substrate and was partially removed to reduce the antenna mass. 65% mass reduction was achieved at the expense of lower efficiency. To further reduce the mass, the polymer layer was perforated. The perforated design resulted in a lightweight stacked meshed patch antenna with a normal transparency of 94%, which can be placed directly on top of the solar cells without affecting the cell performance.
与太阳能电池集成的低轮廓增强带宽光学透明和半透明网状贴片天线
本文提出了三种新型的低轮廓光透明网格贴片天线,具有增强的带宽,可以完全集成到太阳能电池中。带宽增强是通过对两个共振频率相近的方形网格块采用叠加技术实现的。第一个天线使用熔融硅玻璃基板为上下介电层,以保持透明度和与太阳能电池的高可集成性。该天线谐振频率为2.43 GHz,阻抗带宽为6.2%,峰值增益为6.5 dBi。在第二种设计中,聚合物层取代了上层玻璃基板,并被部分去除以减少天线质量。以降低效率为代价实现了65%的质量降低。为了进一步降低质量,聚合物层被穿孔。穿孔设计产生了一种轻型堆叠网状贴片天线,其正常透明度为94%,可以直接放置在太阳能电池的顶部,而不会影响电池的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.50
自引率
12.50%
发文量
90
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信