Multipolar On-Resonance Interference for Super-Gain Electrically Small Dielectric Resonator Antenna (ESDRA) Design

IF 3.6 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Ahmed Abdelraheem;Duhan Eroglu;Karim Seddik;Dimitrios Peroulis
{"title":"Multipolar On-Resonance Interference for Super-Gain Electrically Small Dielectric Resonator Antenna (ESDRA) Design","authors":"Ahmed Abdelraheem;Duhan Eroglu;Karim Seddik;Dimitrios Peroulis","doi":"10.1109/OJAP.2025.3564481","DOIUrl":null,"url":null,"abstract":"Wheeler’s definition of an electrically small antenna is one circumscribed by a one-radian sphere <inline-formula> <tex-math>$(ka\\lt 1)$ </tex-math></inline-formula>. The electrical size ka approximates the highest-order multipole contributing to radiation. Thus, antenna miniaturization should consider the excited multipoles. Following this definition, current literature lacks references to electrically small dielectric resonator antennas (ESDRAs) in the microwave regime. One reason is the lack of design approaches that monitor and engineer the excited multipoles in the dielectric resonator. In this study, a Mie scattering-based approach is proposed, employing multipolar decomposition to tailor the dielectric resonator multipoles. The poor radiation efficiency associated with small size <inline-formula> <tex-math>$(ka\\lt 1)$ </tex-math></inline-formula> is remedied by on-resonance multipole overlapping, subsequently increasing aperture efficiency and gain. Two simple single-ported ESDRAs with the smallest reported ka of 0.99 and 0.62 are presented. Driven by a deeply subwavelength, poorly radiating elementary electric dipole, high-efficiency ESDRAs are obtained. The presented ESDRAs have similar geometrical configurations yet drastically different radiation characteristics: unidirectional and magnetic omnidirectional patterns, 2.2 dB and 1.9 dB peak realized gains, 166% and 403% aperture efficiencies, 66% and 86% radiation efficiencies, −41 dB and −25 dB reflection losses, and 42% and 64% smaller size than the smallest reported ESDRA in the microwave regime—<inline-formula> <tex-math>$ka {=}1.7$ </tex-math></inline-formula>.","PeriodicalId":34267,"journal":{"name":"IEEE Open Journal of Antennas and Propagation","volume":"6 4","pages":"1135-1155"},"PeriodicalIF":3.6000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10976707","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Antennas and Propagation","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10976707/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Wheeler’s definition of an electrically small antenna is one circumscribed by a one-radian sphere $(ka\lt 1)$ . The electrical size ka approximates the highest-order multipole contributing to radiation. Thus, antenna miniaturization should consider the excited multipoles. Following this definition, current literature lacks references to electrically small dielectric resonator antennas (ESDRAs) in the microwave regime. One reason is the lack of design approaches that monitor and engineer the excited multipoles in the dielectric resonator. In this study, a Mie scattering-based approach is proposed, employing multipolar decomposition to tailor the dielectric resonator multipoles. The poor radiation efficiency associated with small size $(ka\lt 1)$ is remedied by on-resonance multipole overlapping, subsequently increasing aperture efficiency and gain. Two simple single-ported ESDRAs with the smallest reported ka of 0.99 and 0.62 are presented. Driven by a deeply subwavelength, poorly radiating elementary electric dipole, high-efficiency ESDRAs are obtained. The presented ESDRAs have similar geometrical configurations yet drastically different radiation characteristics: unidirectional and magnetic omnidirectional patterns, 2.2 dB and 1.9 dB peak realized gains, 166% and 403% aperture efficiencies, 66% and 86% radiation efficiencies, −41 dB and −25 dB reflection losses, and 42% and 64% smaller size than the smallest reported ESDRA in the microwave regime— $ka {=}1.7$ .
超增益电小介质谐振器天线(ESDRA)设计中的多极非共振干扰
惠勒对电小天线的定义是由一个1弧度球体(ka\lt 1)限定的。电学尺寸ka近似于影响辐射的最高阶多极子。因此,天线小型化应考虑受激多极。根据这一定义,目前的文献缺乏微波领域的电小型介质谐振器天线(ESDRAs)的参考。其中一个原因是缺乏监测和设计介电谐振器中受激多极子的设计方法。在这项研究中,提出了一种基于Mie散射的方法,采用多极分解来定制介电谐振器的多极。小尺寸$(ka\lt 1)$的低辐射效率可以通过共振多极重叠来弥补,从而提高孔径效率和增益。介绍了两种简单的单端口esdra,其最小ka分别为0.99和0.62。在深亚波长、低辐射的基本电偶极子驱动下,获得了高效率的esdra。所提出的ESDRA具有相似的几何结构,但辐射特性却截然不同:单向和磁性全向模式,峰值实现增益2.2 dB和1.9 dB,孔径效率分别为166%和403%,辐射效率分别为66%和86%,反射损耗分别为- 41 dB和- 25 dB,尺寸比目前报道的最小的ESDRA在微波波段($ka{=}1.7$)小42%和64%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.50
自引率
12.50%
发文量
90
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信