Efficient Optimization Design Method for Ultra-Wideband Absorber Utilizing Frequency-Dispersive Paper-Composites

IF 3.6 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Xin Xiu;Weihao Tu;Kun Tang;Xiaojiao Zhao;Jin Long;Wenjie Feng;Wenquan Che
{"title":"Efficient Optimization Design Method for Ultra-Wideband Absorber Utilizing Frequency-Dispersive Paper-Composites","authors":"Xin Xiu;Weihao Tu;Kun Tang;Xiaojiao Zhao;Jin Long;Wenjie Feng;Wenquan Che","doi":"10.1109/OJAP.2025.3561513","DOIUrl":null,"url":null,"abstract":"This work presents a novel design method for ultra-wideband absorbers using frequency-dispersive materials. In this method, a characterization model for permittivity is constructed and then integrated with a modified genetic algorithm for further optimization. Firstly, a carbon nanotube (CNT) doped paper composite (PC) is presented, which exhibits obvious frequency-dependent dielectric loss characteristics. The composite is then incorporated into a periodic-plate array (PPA), thereby enabling flexible adjustment of the effective permittivity. Secondly, a Beta-distribution mathematical model is proposed to characterize the frequency-dependent permittivity of the PC-loaded PPAs. The model is then integrated with a genetic algorithm, offering an efficient approach for determining the optimal permittivity of materials in a multilayer absorber, thus achieving ultra-wideband absorption at a specific thickness. For demonstration, a three-layered absorber is designed and then fabricated using the presented CNT-doped composites with sheet resistances of <inline-formula> <tex-math>$100\\Omega $ </tex-math></inline-formula>/sq and <inline-formula> <tex-math>$150\\Omega $ </tex-math></inline-formula>/sq. The designed absorber has an absorption band (RL<−10dB)> <tex-math>$0.16{\\lambda }_{\\mathrm { L}}$ </tex-math></inline-formula>). The simulated and measured results exhibit good agreement, validating our proposed method.","PeriodicalId":34267,"journal":{"name":"IEEE Open Journal of Antennas and Propagation","volume":"6 4","pages":"1084-1095"},"PeriodicalIF":3.6000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10966442","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Antennas and Propagation","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10966442/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This work presents a novel design method for ultra-wideband absorbers using frequency-dispersive materials. In this method, a characterization model for permittivity is constructed and then integrated with a modified genetic algorithm for further optimization. Firstly, a carbon nanotube (CNT) doped paper composite (PC) is presented, which exhibits obvious frequency-dependent dielectric loss characteristics. The composite is then incorporated into a periodic-plate array (PPA), thereby enabling flexible adjustment of the effective permittivity. Secondly, a Beta-distribution mathematical model is proposed to characterize the frequency-dependent permittivity of the PC-loaded PPAs. The model is then integrated with a genetic algorithm, offering an efficient approach for determining the optimal permittivity of materials in a multilayer absorber, thus achieving ultra-wideband absorption at a specific thickness. For demonstration, a three-layered absorber is designed and then fabricated using the presented CNT-doped composites with sheet resistances of $100\Omega $ /sq and $150\Omega $ /sq. The designed absorber has an absorption band (RL<−10dB)> $0.16{\lambda }_{\mathrm { L}}$ ). The simulated and measured results exhibit good agreement, validating our proposed method.
基于频散纸复合材料的超宽带吸波器高效优化设计方法
本文提出了一种利用频散材料设计超宽带吸波器的新方法。该方法首先建立介电常数的表征模型,然后结合改进的遗传算法进行进一步优化。首先,提出了一种碳纳米管(CNT)掺杂纸复合材料(PC),其具有明显的频率相关介质损耗特性。然后将复合材料纳入周期性板阵列(PPA),从而能够灵活调整有效介电常数。其次,提出了一个beta分布数学模型来表征pc负载PPAs的频率相关介电常数。然后将该模型与遗传算法相结合,提供了一种有效的方法来确定多层吸收器中材料的最佳介电常数,从而实现特定厚度下的超宽带吸收。为了证明这一点,设计并制造了一个三层吸收器,然后使用所提出的碳纳米管掺杂复合材料,片电阻为$100\Omega $ /sq和$150\Omega $ /sq。所设计的吸收器具有吸收带(RL $0.16{\lambda }_{\mathrm { L}}$)。仿真结果与实测结果吻合良好,验证了本文方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.50
自引率
12.50%
发文量
90
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信