Tensor extriangulated categories

IF 0.8 2区 数学 Q2 MATHEMATICS
Raphael Bennett-Tennenhaus , Isambard Goodbody , Janina C. Letz , Amit Shah
{"title":"Tensor extriangulated categories","authors":"Raphael Bennett-Tennenhaus ,&nbsp;Isambard Goodbody ,&nbsp;Janina C. Letz ,&nbsp;Amit Shah","doi":"10.1016/j.jalgebra.2025.07.041","DOIUrl":null,"url":null,"abstract":"<div><div>A tensor extriangulated category is an extriangulated category with a symmetric monoidal structure that is compatible with the extriangulated structure. To this end we define a notion of a biextriangulated functor <span><math><mi>A</mi><mo>×</mo><mi>B</mi><mo>→</mo><mi>C</mi></math></span>, with compatibility conditions between the components. We have two versions of compatibility conditions, the stronger depending on the higher extensions of the extriangulated categories. We give many examples of tensor extriangulated categories. Finally, we generalise Balmer's classification of thick tensor ideals to tensor extriangulated categories.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"685 ","pages":"Pages 361-405"},"PeriodicalIF":0.8000,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325004533","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A tensor extriangulated category is an extriangulated category with a symmetric monoidal structure that is compatible with the extriangulated structure. To this end we define a notion of a biextriangulated functor A×BC, with compatibility conditions between the components. We have two versions of compatibility conditions, the stronger depending on the higher extensions of the extriangulated categories. We give many examples of tensor extriangulated categories. Finally, we generalise Balmer's classification of thick tensor ideals to tensor extriangulated categories.
张量外三角化范畴
张量外三角化范畴是具有与外三角化结构相容的对称单面结构的外三角化范畴。为此,我们定义了双三角化函子A×B→C的概念,其组成部分之间具有兼容性条件。我们有两个版本的兼容条件,更强的依赖于外三角化范畴的更高扩展。我们给出了张量外三角化范畴的许多例子。最后,我们将Balmer的厚张量理想分类推广到张量外三角化范畴。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Algebra
Journal of Algebra 数学-数学
CiteScore
1.50
自引率
22.20%
发文量
414
审稿时长
2-4 weeks
期刊介绍: The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信