{"title":"Equational theories of the Boolean matrix monoid BRn with involutions","authors":"Wen-Ting Zhang, Meng Gao, Yan-Feng Luo","doi":"10.1016/j.jalgebra.2025.07.045","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>B</mi><msub><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> be the monoid of all <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span> Boolean matrices with 1s on the main diagonal. It is known that <span><math><mi>B</mi><msub><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> can be identified with the monoid of all reflexive binary relations on an <em>n</em>-element set under composition. The monoid <span><math><mi>B</mi><msub><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> admits two natural unary operations: the transposition <sup><em>T</em></sup> and the skew transposition <sup><em>D</em></sup>, which makes <span><math><mi>B</mi><msub><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> an involutory monoid. Let <span><math><mi>B</mi><msub><mrow><mi>U</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> (resp. <span><math><mi>C</mi><msub><mrow><mi>B</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>) be the submonoid of <span><math><mi>B</mi><msub><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> consisting of all <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span> upper triangular Boolean matrices with 1s on the main diagonal (resp. all convex Boolean matrices) and <span><math><mi>C</mi><msub><mrow><mi>U</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>=</mo><mi>C</mi><msub><mrow><mi>B</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>∩</mo><mi>B</mi><msub><mrow><mi>U</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> the monoid of all convex upper triangular Boolean matrices. Denote by <span><math><mi>D</mi><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> the double Catalan monoid which is a submonoid of <span><math><mi>C</mi><msub><mrow><mi>B</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>.</div><div>In this paper, we explore equational theories of the involutory monoids <span><math><mo>(</mo><mi>B</mi><msub><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><msup><mrow></mrow><mrow><mi>T</mi></mrow></msup><mo>)</mo></math></span> and <span><math><mo>(</mo><mi>B</mi><msub><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><msup><mrow></mrow><mrow><mi>D</mi></mrow></msup><mo>)</mo></math></span>. Firstly, we have completely solved the finite basis problems for <span><math><mo>(</mo><mi>B</mi><msub><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><msup><mrow></mrow><mrow><mi>T</mi></mrow></msup><mo>)</mo></math></span> and <span><math><mo>(</mo><mi>B</mi><msub><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><msup><mrow></mrow><mrow><mi>D</mi></mrow></msup><mo>)</mo></math></span>. It is shown that the involutory monoid <span><math><mo>(</mo><mi>B</mi><msub><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><msup><mrow></mrow><mrow><mi>T</mi></mrow></msup><mo>)</mo></math></span> is finitely based if and only if <span><math><mi>n</mi><mo>⩽</mo><mn>4</mn></math></span>, and <span><math><mo>(</mo><mi>B</mi><msub><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><msup><mrow></mrow><mrow><mi>D</mi></mrow></msup><mo>)</mo></math></span> is finitely based if and only if <span><math><mi>n</mi><mo>⩽</mo><mn>2</mn></math></span>. Secondly, we study the equational equivalence problem for involutory submonoids of <span><math><mo>(</mo><mi>B</mi><msub><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><msup><mrow></mrow><mrow><mi>T</mi></mrow></msup><mo>)</mo></math></span> and <span><math><mo>(</mo><mi>B</mi><msub><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><msup><mrow></mrow><mrow><mi>D</mi></mrow></msup><mo>)</mo></math></span>, respectively. It is proved that the involutory monoid <span><math><mo>(</mo><mi>B</mi><msub><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><msup><mrow></mrow><mrow><mi>T</mi></mrow></msup><mo>)</mo></math></span> satisfies the same identities as <span><math><mo>(</mo><mi>C</mi><msub><mrow><mi>B</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><msup><mrow></mrow><mrow><mi>T</mi></mrow></msup><mo>)</mo></math></span> for each positive integer <em>n</em>, but does not satisfy the same identities as <span><math><mo>(</mo><mi>D</mi><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><msup><mrow></mrow><mrow><mi>T</mi></mrow></msup><mo>)</mo></math></span> for each <span><math><mi>n</mi><mo>⩾</mo><mn>2</mn></math></span>. It is also proved that the involutory monoids <span><math><mo>(</mo><mi>C</mi><msub><mrow><mi>U</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><msup><mrow></mrow><mrow><mi>D</mi></mrow></msup><mo>)</mo></math></span>, <span><math><mo>(</mo><mi>D</mi><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><msup><mrow></mrow><mrow><mi>D</mi></mrow></msup><mo>)</mo></math></span>, <span><math><mo>(</mo><mi>C</mi><msub><mrow><mi>B</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><msup><mrow></mrow><mrow><mi>D</mi></mrow></msup><mo>)</mo></math></span> and <span><math><mo>(</mo><mi>B</mi><msub><mrow><mi>U</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><msup><mrow></mrow><mrow><mi>D</mi></mrow></msup><mo>)</mo></math></span> satisfy the same identities for each positive integer <em>n</em>, but do not satisfy the same identities as <span><math><mo>(</mo><mi>B</mi><msub><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><msup><mrow></mrow><mrow><mi>D</mi></mrow></msup><mo>)</mo></math></span> for each <span><math><mi>n</mi><mo>⩾</mo><mn>3</mn></math></span>.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"685 ","pages":"Pages 225-270"},"PeriodicalIF":0.8000,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325004600","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let be the monoid of all Boolean matrices with 1s on the main diagonal. It is known that can be identified with the monoid of all reflexive binary relations on an n-element set under composition. The monoid admits two natural unary operations: the transposition T and the skew transposition D, which makes an involutory monoid. Let (resp. ) be the submonoid of consisting of all upper triangular Boolean matrices with 1s on the main diagonal (resp. all convex Boolean matrices) and the monoid of all convex upper triangular Boolean matrices. Denote by the double Catalan monoid which is a submonoid of .
In this paper, we explore equational theories of the involutory monoids and . Firstly, we have completely solved the finite basis problems for and . It is shown that the involutory monoid is finitely based if and only if , and is finitely based if and only if . Secondly, we study the equational equivalence problem for involutory submonoids of and , respectively. It is proved that the involutory monoid satisfies the same identities as for each positive integer n, but does not satisfy the same identities as for each . It is also proved that the involutory monoids , , and satisfy the same identities for each positive integer n, but do not satisfy the same identities as for each .
期刊介绍:
The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.