Equational theories of the Boolean matrix monoid BRn with involutions

IF 0.8 2区 数学 Q2 MATHEMATICS
Wen-Ting Zhang, Meng Gao, Yan-Feng Luo
{"title":"Equational theories of the Boolean matrix monoid BRn with involutions","authors":"Wen-Ting Zhang,&nbsp;Meng Gao,&nbsp;Yan-Feng Luo","doi":"10.1016/j.jalgebra.2025.07.045","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>B</mi><msub><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> be the monoid of all <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span> Boolean matrices with 1s on the main diagonal. It is known that <span><math><mi>B</mi><msub><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> can be identified with the monoid of all reflexive binary relations on an <em>n</em>-element set under composition. The monoid <span><math><mi>B</mi><msub><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> admits two natural unary operations: the transposition <sup><em>T</em></sup> and the skew transposition <sup><em>D</em></sup>, which makes <span><math><mi>B</mi><msub><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> an involutory monoid. Let <span><math><mi>B</mi><msub><mrow><mi>U</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> (resp. <span><math><mi>C</mi><msub><mrow><mi>B</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>) be the submonoid of <span><math><mi>B</mi><msub><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> consisting of all <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span> upper triangular Boolean matrices with 1s on the main diagonal (resp. all convex Boolean matrices) and <span><math><mi>C</mi><msub><mrow><mi>U</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>=</mo><mi>C</mi><msub><mrow><mi>B</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>∩</mo><mi>B</mi><msub><mrow><mi>U</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> the monoid of all convex upper triangular Boolean matrices. Denote by <span><math><mi>D</mi><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> the double Catalan monoid which is a submonoid of <span><math><mi>C</mi><msub><mrow><mi>B</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>.</div><div>In this paper, we explore equational theories of the involutory monoids <span><math><mo>(</mo><mi>B</mi><msub><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><msup><mrow></mrow><mrow><mi>T</mi></mrow></msup><mo>)</mo></math></span> and <span><math><mo>(</mo><mi>B</mi><msub><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><msup><mrow></mrow><mrow><mi>D</mi></mrow></msup><mo>)</mo></math></span>. Firstly, we have completely solved the finite basis problems for <span><math><mo>(</mo><mi>B</mi><msub><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><msup><mrow></mrow><mrow><mi>T</mi></mrow></msup><mo>)</mo></math></span> and <span><math><mo>(</mo><mi>B</mi><msub><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><msup><mrow></mrow><mrow><mi>D</mi></mrow></msup><mo>)</mo></math></span>. It is shown that the involutory monoid <span><math><mo>(</mo><mi>B</mi><msub><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><msup><mrow></mrow><mrow><mi>T</mi></mrow></msup><mo>)</mo></math></span> is finitely based if and only if <span><math><mi>n</mi><mo>⩽</mo><mn>4</mn></math></span>, and <span><math><mo>(</mo><mi>B</mi><msub><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><msup><mrow></mrow><mrow><mi>D</mi></mrow></msup><mo>)</mo></math></span> is finitely based if and only if <span><math><mi>n</mi><mo>⩽</mo><mn>2</mn></math></span>. Secondly, we study the equational equivalence problem for involutory submonoids of <span><math><mo>(</mo><mi>B</mi><msub><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><msup><mrow></mrow><mrow><mi>T</mi></mrow></msup><mo>)</mo></math></span> and <span><math><mo>(</mo><mi>B</mi><msub><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><msup><mrow></mrow><mrow><mi>D</mi></mrow></msup><mo>)</mo></math></span>, respectively. It is proved that the involutory monoid <span><math><mo>(</mo><mi>B</mi><msub><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><msup><mrow></mrow><mrow><mi>T</mi></mrow></msup><mo>)</mo></math></span> satisfies the same identities as <span><math><mo>(</mo><mi>C</mi><msub><mrow><mi>B</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><msup><mrow></mrow><mrow><mi>T</mi></mrow></msup><mo>)</mo></math></span> for each positive integer <em>n</em>, but does not satisfy the same identities as <span><math><mo>(</mo><mi>D</mi><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><msup><mrow></mrow><mrow><mi>T</mi></mrow></msup><mo>)</mo></math></span> for each <span><math><mi>n</mi><mo>⩾</mo><mn>2</mn></math></span>. It is also proved that the involutory monoids <span><math><mo>(</mo><mi>C</mi><msub><mrow><mi>U</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><msup><mrow></mrow><mrow><mi>D</mi></mrow></msup><mo>)</mo></math></span>, <span><math><mo>(</mo><mi>D</mi><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><msup><mrow></mrow><mrow><mi>D</mi></mrow></msup><mo>)</mo></math></span>, <span><math><mo>(</mo><mi>C</mi><msub><mrow><mi>B</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><msup><mrow></mrow><mrow><mi>D</mi></mrow></msup><mo>)</mo></math></span> and <span><math><mo>(</mo><mi>B</mi><msub><mrow><mi>U</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><msup><mrow></mrow><mrow><mi>D</mi></mrow></msup><mo>)</mo></math></span> satisfy the same identities for each positive integer <em>n</em>, but do not satisfy the same identities as <span><math><mo>(</mo><mi>B</mi><msub><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo><msup><mrow></mrow><mrow><mi>D</mi></mrow></msup><mo>)</mo></math></span> for each <span><math><mi>n</mi><mo>⩾</mo><mn>3</mn></math></span>.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"685 ","pages":"Pages 225-270"},"PeriodicalIF":0.8000,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325004600","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let BRn be the monoid of all n×n Boolean matrices with 1s on the main diagonal. It is known that BRn can be identified with the monoid of all reflexive binary relations on an n-element set under composition. The monoid BRn admits two natural unary operations: the transposition T and the skew transposition D, which makes BRn an involutory monoid. Let BUn (resp. CBn) be the submonoid of BRn consisting of all n×n upper triangular Boolean matrices with 1s on the main diagonal (resp. all convex Boolean matrices) and CUn=CBnBUn the monoid of all convex upper triangular Boolean matrices. Denote by DCn the double Catalan monoid which is a submonoid of CBn.
In this paper, we explore equational theories of the involutory monoids (BRn,T) and (BRn,D). Firstly, we have completely solved the finite basis problems for (BRn,T) and (BRn,D). It is shown that the involutory monoid (BRn,T) is finitely based if and only if n4, and (BRn,D) is finitely based if and only if n2. Secondly, we study the equational equivalence problem for involutory submonoids of (BRn,T) and (BRn,D), respectively. It is proved that the involutory monoid (BRn,T) satisfies the same identities as (CBn,T) for each positive integer n, but does not satisfy the same identities as (DCn,T) for each n2. It is also proved that the involutory monoids (CUn,D), (DCn,D), (CBn,D) and (BUn,D) satisfy the same identities for each positive integer n, but do not satisfy the same identities as (BRn,D) for each n3.
有对合的布尔矩阵单阵BRn的方程理论
设BRn为所有n×n主对角线上有1的布尔矩阵的幺一元。已知BRn可以用复合下n元素集合上所有自反二元关系的幺一元来标识。单群BRn允许两个自然一元运算:转置T和斜转置D,这使得BRn是一个对合单群。让我来回答。CBn)是BRn的子一元阵,由所有n×n上三角布尔矩阵组成,主对角线上有1(如:1)。所有凸上三角形布尔矩阵的单阵)和CUn=CBn∩BUn。用DCn表示是CBn的子单群的双加泰罗尼亚单群。本文探讨了对折单群(BRn,T)和(BRn,D)的方程理论。首先,我们完全解决了(BRn,T)和(BRn,D)的有限基问题。证明对合单群(BRn,T)是有限基当且仅当n≤4,(BRn,D)是有限基当且仅当n≤2。其次,分别研究了(BRn,T)和(BRn,D)对折子模的等价问题。证明对合单群(BRn,T)对于每个正整数n满足与(CBn,T)相同的恒等式,但对于每个n大于或等于2不满足与(DCn,T)相同的恒等式。还证明对合单群(CUn,D), (DCn,D), (CBn,D)和(BUn,D)对于每个正整数n满足相同的恒等式,但对于每个n大于或等于3不满足与(BRn,D)相同的恒等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Algebra
Journal of Algebra 数学-数学
CiteScore
1.50
自引率
22.20%
发文量
414
审稿时长
2-4 weeks
期刊介绍: The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信