Cleft extensions of rings and singularity categories

IF 0.8 2区 数学 Q2 MATHEMATICS
Panagiotis Kostas
{"title":"Cleft extensions of rings and singularity categories","authors":"Panagiotis Kostas","doi":"10.1016/j.jalgebra.2025.07.044","DOIUrl":null,"url":null,"abstract":"<div><div>This paper provides a systematic treatment of Gorenstein homological aspects for cleft extensions of rings. In particular, we investigate Goresnteinness, Gorenstein projective modules and singularity categories in the context of cleft extensions of rings. This setting includes triangular matrix rings, trivial extension rings and tensor rings, among others. Under certain conditions, we prove singular equivalences between the algebras in a cleft extension, unifying an abundance of known results. Moreover, we compare the big singularity categories of cleft extensions of rings in the sense of Krause.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"685 ","pages":"Pages 160-224"},"PeriodicalIF":0.8000,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325004612","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper provides a systematic treatment of Gorenstein homological aspects for cleft extensions of rings. In particular, we investigate Goresnteinness, Gorenstein projective modules and singularity categories in the context of cleft extensions of rings. This setting includes triangular matrix rings, trivial extension rings and tensor rings, among others. Under certain conditions, we prove singular equivalences between the algebras in a cleft extension, unifying an abundance of known results. Moreover, we compare the big singularity categories of cleft extensions of rings in the sense of Krause.
环的裂隙扩展与奇异范畴
本文给出了环的裂扩展的Gorenstein同调方面的系统处理。特别地,我们研究了环的裂扩展下的Gorenstein性、Gorenstein投影模和奇异范畴。这种设置包括三角矩阵环、平凡扩展环和张量环等。在一定条件下,我们证明了在裂扩展中代数之间的奇异等价,统一了大量的已知结果。此外,我们还比较了Krause意义上环裂扩张的大奇异范畴。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Algebra
Journal of Algebra 数学-数学
CiteScore
1.50
自引率
22.20%
发文量
414
审稿时长
2-4 weeks
期刊介绍: The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信