Zhenfeng Gong , Ruoran Kan , Mingzhe Li , Mi Zhou , Guojie Wu , Xiang Chen
{"title":"Sensitive light-induced thermoelastic spectroscopy based on transmitted light amplification","authors":"Zhenfeng Gong , Ruoran Kan , Mingzhe Li , Mi Zhou , Guojie Wu , Xiang Chen","doi":"10.1016/j.pacs.2025.100759","DOIUrl":null,"url":null,"abstract":"<div><div>This paper investigates the light-induced thermoelastic spectroscopy (LITES) based on transmitted light amplification to realize high-precision gas detection. The modulated laser beam passes through a multi-pass cell and is then coupled to an optical amplifier. The multi-pass cell reflects the laser beam 100 times, has an optical length of 16 m, and its transmitted light intensity is 1.67 mW. A narrowband fiber optical filter with a bandwidth of 0.8 nm is utilized to suppress optical noise. Based on the transmitted light amplification, the signal-to-noise ratio (SNR) is improved by a factor of 3.6. To investigate the enhancement of second harmonic (2 <em>f</em>) signals under weak light intensities, a fiber optical attenuator is adopted to attenuate the transmitted light intensity. While the transmitted light intensity is attenuated to 0.048 mW, a high SNR of 1823 and a minimum detection limit (MDL) of 0.110 ppm can be obtained. Hence, LITES based on transmitted light amplification enables high-precision measurements while the light intensity is only at the scale of μW. This approach facilitates a significant increase in the number of beam reflections as well as the optical length of the multi-pass cell and resonant cavity for LITES sensors.</div></div>","PeriodicalId":56025,"journal":{"name":"Photoacoustics","volume":"45 ","pages":"Article 100759"},"PeriodicalIF":6.8000,"publicationDate":"2025-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photoacoustics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213597925000825","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This paper investigates the light-induced thermoelastic spectroscopy (LITES) based on transmitted light amplification to realize high-precision gas detection. The modulated laser beam passes through a multi-pass cell and is then coupled to an optical amplifier. The multi-pass cell reflects the laser beam 100 times, has an optical length of 16 m, and its transmitted light intensity is 1.67 mW. A narrowband fiber optical filter with a bandwidth of 0.8 nm is utilized to suppress optical noise. Based on the transmitted light amplification, the signal-to-noise ratio (SNR) is improved by a factor of 3.6. To investigate the enhancement of second harmonic (2 f) signals under weak light intensities, a fiber optical attenuator is adopted to attenuate the transmitted light intensity. While the transmitted light intensity is attenuated to 0.048 mW, a high SNR of 1823 and a minimum detection limit (MDL) of 0.110 ppm can be obtained. Hence, LITES based on transmitted light amplification enables high-precision measurements while the light intensity is only at the scale of μW. This approach facilitates a significant increase in the number of beam reflections as well as the optical length of the multi-pass cell and resonant cavity for LITES sensors.
PhotoacousticsPhysics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
11.40
自引率
16.50%
发文量
96
审稿时长
53 days
期刊介绍:
The open access Photoacoustics journal (PACS) aims to publish original research and review contributions in the field of photoacoustics-optoacoustics-thermoacoustics. This field utilizes acoustical and ultrasonic phenomena excited by electromagnetic radiation for the detection, visualization, and characterization of various materials and biological tissues, including living organisms.
Recent advancements in laser technologies, ultrasound detection approaches, inverse theory, and fast reconstruction algorithms have greatly supported the rapid progress in this field. The unique contrast provided by molecular absorption in photoacoustic-optoacoustic-thermoacoustic methods has allowed for addressing unmet biological and medical needs such as pre-clinical research, clinical imaging of vasculature, tissue and disease physiology, drug efficacy, surgery guidance, and therapy monitoring.
Applications of this field encompass a wide range of medical imaging and sensing applications, including cancer, vascular diseases, brain neurophysiology, ophthalmology, and diabetes. Moreover, photoacoustics-optoacoustics-thermoacoustics is a multidisciplinary field, with contributions from chemistry and nanotechnology, where novel materials such as biodegradable nanoparticles, organic dyes, targeted agents, theranostic probes, and genetically expressed markers are being actively developed.
These advanced materials have significantly improved the signal-to-noise ratio and tissue contrast in photoacoustic methods.