Novel nonlocal three-component mKdV equations and classification of solutions

IF 2.5 3区 物理与天体物理 Q2 ACOUSTICS
Mengli Tian , Chunxia Li , Fei Li , Yue Li , Yuqin Yao
{"title":"Novel nonlocal three-component mKdV equations and classification of solutions","authors":"Mengli Tian ,&nbsp;Chunxia Li ,&nbsp;Fei Li ,&nbsp;Yue Li ,&nbsp;Yuqin Yao","doi":"10.1016/j.wavemoti.2025.103616","DOIUrl":null,"url":null,"abstract":"<div><div>A kind of nonlocal reduction for the unreduced modified Korteweg–de Vries (mKdV) system is presented, which yields the reverse space–time nonlocal complex three-component mKdV (NCTC-mKdV) equation. This equation can be regarded as a new member of the Ablowitz–Kaup–Newell–Segur (AKNS) integrable hierarchy. We develop the Cauchy matrix approach to investigate the solution structure of the nonlocal system systematically, where the Sylvester equation is pivotal in constructing explicit solutions. In fact, the analytical expressions of the solutions can be classified according to the eigenvalue structure of the coefficient matrix <span><math><mi>K</mi></math></span> in the Sylvester equation. Specially, various explicit solutions of the NCTC-mKdV equation are derived, including soliton solution, Jordan solution and diagonal-Jordan-block mixed solution. Notably, the conditions for generating one-soliton solution, two-soliton solution, mixed solution, periodic solution, double-periodic solution, quasi-periodic solution and dark soliton solution are presented and their dynamic behaviors are analyzed. The results reveal the structural features of solutions to the three-component mKdV equation under nonlocal reduction.</div></div>","PeriodicalId":49367,"journal":{"name":"Wave Motion","volume":"139 ","pages":"Article 103616"},"PeriodicalIF":2.5000,"publicationDate":"2025-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wave Motion","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165212525001271","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

A kind of nonlocal reduction for the unreduced modified Korteweg–de Vries (mKdV) system is presented, which yields the reverse space–time nonlocal complex three-component mKdV (NCTC-mKdV) equation. This equation can be regarded as a new member of the Ablowitz–Kaup–Newell–Segur (AKNS) integrable hierarchy. We develop the Cauchy matrix approach to investigate the solution structure of the nonlocal system systematically, where the Sylvester equation is pivotal in constructing explicit solutions. In fact, the analytical expressions of the solutions can be classified according to the eigenvalue structure of the coefficient matrix K in the Sylvester equation. Specially, various explicit solutions of the NCTC-mKdV equation are derived, including soliton solution, Jordan solution and diagonal-Jordan-block mixed solution. Notably, the conditions for generating one-soliton solution, two-soliton solution, mixed solution, periodic solution, double-periodic solution, quasi-periodic solution and dark soliton solution are presented and their dynamic behaviors are analyzed. The results reveal the structural features of solutions to the three-component mKdV equation under nonlocal reduction.
新型非局部三分量mKdV方程及其解的分类
对未约简的修正Korteweg-de Vries (mKdV)系统进行了一种非局部约简,得到了逆时空非局部复三分量mKdV (NCTC-mKdV)方程。该方程可视为ablowitz - kap - newwell - segur (AKNS)可积层次的新成员。我们发展柯西矩阵方法来系统地研究非局部系统的解结构,其中Sylvester方程是构造显式解的关键。实际上,解的解析表达式可以根据Sylvester方程中系数矩阵K的特征值结构进行分类。特别地,导出了NCTC-mKdV方程的各种显式解,包括孤子解、Jordan解和对角-Jordan-块混合解。给出了单孤子解、双孤子解、混合解、周期解、双周期解、拟周期解和暗孤子解的生成条件,并分析了它们的动力学行为。结果揭示了非局部约化下三分量mKdV方程解的结构特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Wave Motion
Wave Motion 物理-力学
CiteScore
4.10
自引率
8.30%
发文量
118
审稿时长
3 months
期刊介绍: Wave Motion is devoted to the cross fertilization of ideas, and to stimulating interaction between workers in various research areas in which wave propagation phenomena play a dominant role. The description and analysis of wave propagation phenomena provides a unifying thread connecting diverse areas of engineering and the physical sciences such as acoustics, optics, geophysics, seismology, electromagnetic theory, solid and fluid mechanics. The journal publishes papers on analytical, numerical and experimental methods. Papers that address fundamentally new topics in wave phenomena or develop wave propagation methods for solving direct and inverse problems are of interest to the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信