Intersection-union families

IF 1.2 2区 数学 Q2 MATHEMATICS
Peter Frankl , Jian Wang
{"title":"Intersection-union families","authors":"Peter Frankl ,&nbsp;Jian Wang","doi":"10.1016/j.jcta.2025.106100","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><msup><mrow><mn>2</mn></mrow><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></msup></math></span> denote the power set of the <em>n</em>-set <span><math><mo>[</mo><mi>n</mi><mo>]</mo><mo>=</mo><mo>{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi><mo>}</mo></math></span>. For positive integers <span><math><mi>n</mi><mo>,</mo><mi>p</mi><mo>,</mo><mi>q</mi></math></span>, <span><math><mi>n</mi><mo>≥</mo><mi>p</mi><mo>+</mo><mi>q</mi></math></span> let <span><math><mi>m</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></math></span> denote the maximum of <span><math><mo>|</mo><mi>F</mi><mo>|</mo></math></span> for a family <span><math><mi>F</mi><mo>⊂</mo><msup><mrow><mn>2</mn></mrow><mrow><mo>[</mo><mi>n</mi><mo>]</mo></mrow></msup></math></span> satisfying <span><math><mo>|</mo><mi>F</mi><mo>∩</mo><mi>G</mi><mo>|</mo><mo>≥</mo><mi>p</mi></math></span> and <span><math><mo>|</mo><mi>F</mi><mo>∪</mo><mi>G</mi><mo>|</mo><mo>≤</mo><mi>n</mi><mo>−</mo><mi>q</mi></math></span> for all <span><math><mi>F</mi><mo>,</mo><mi>G</mi><mo>∈</mo><mi>F</mi></math></span>. The exact value of <span><math><mi>m</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></math></span> has been known for half a century in the case <span><math><mi>p</mi><mo>=</mo><mn>1</mn></math></span> or <span><math><mi>q</mi><mo>=</mo><mn>1</mn></math></span>. Bang, Sharp and Winkler determined it in the case <span><math><mi>n</mi><mo>−</mo><mi>p</mi><mo>−</mo><mi>q</mi><mo>≤</mo><mn>3</mn></math></span>. The aim of the present paper is to establish the exact value of <span><math><mi>m</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></math></span> for <span><math><mi>n</mi><mo>≥</mo><msup><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mi>p</mi><mo>−</mo><mi>q</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mrow><mn>3</mn></mrow></msup></math></span> and also for <span><math><mi>n</mi><mo>−</mo><mi>p</mi><mo>−</mo><mi>q</mi><mo>=</mo><mn>4</mn></math></span>.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"217 ","pages":"Article 106100"},"PeriodicalIF":1.2000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097316525000950","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let 2[n] denote the power set of the n-set [n]={1,2,,n}. For positive integers n,p,q, np+q let m(n,p,q) denote the maximum of |F| for a family F2[n] satisfying |FG|p and |FG|nq for all F,GF. The exact value of m(n,p,q) has been known for half a century in the case p=1 or q=1. Bang, Sharp and Winkler determined it in the case npq3. The aim of the present paper is to establish the exact value of m(n,p,q) for n(npq+1)3 and also for npq=4.
Intersection-union家庭
设2[n]表示n-集合[n]={1,2,…,n}的幂集。对于正整数n,p,q, n≥p+q,令m(n,p,q)表示族F∧2[n]满足|F∩G|≥p且对所有F,G∈F满足|F∪G|≤n−q的最大值|F|。在p=1或q=1的情况下,m(n,p,q)的确切值已经知道了半个世纪。Bang, Sharp和Winkler在n−p−q≤3的情况下确定了它。本文的目的是建立当n≥(n−p−q+1)3和n−p−q=4时m(n,p,q)的精确值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.90
自引率
9.10%
发文量
94
审稿时长
12 months
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信