{"title":"Maximum Erdős-Ko-Rado sets of chambers and their antidesigns in vector-spaces of even dimension","authors":"Philipp Heering , Jesse Lansdown , Klaus Metsch","doi":"10.1016/j.jcta.2025.106098","DOIUrl":null,"url":null,"abstract":"<div><div>A chamber of the vector space <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msubsup></math></span> is a set <span><math><mo>{</mo><msub><mrow><mi>S</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>}</mo></math></span> of subspaces of <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msubsup></math></span> where <span><math><msub><mrow><mi>S</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>⊂</mo><msub><mrow><mi>S</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>⊂</mo><mo>…</mo><mo>⊂</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub></math></span> and <span><math><mi>dim</mi><mo></mo><mo>(</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo><mo>=</mo><mi>i</mi></math></span> for <span><math><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi><mo>−</mo><mn>1</mn></math></span>. By <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>q</mi><mo>)</mo></math></span> we denote the graph whose vertices are the chambers of <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msubsup></math></span> with two chambers <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><mo>{</mo><msub><mrow><mi>S</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>}</mo></math></span> and <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>=</mo><mo>{</mo><msub><mrow><mi>T</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>}</mo></math></span> adjacent in <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>q</mi><mo>)</mo></math></span>, if <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>∩</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi><mo>−</mo><mi>i</mi></mrow></msub><mo>=</mo><mo>{</mo><mn>0</mn><mo>}</mo></math></span> for <span><math><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi><mo>−</mo><mn>1</mn></math></span>. The Erdős-Ko-Rado problem on chambers is equivalent to determining the structure of independent sets of <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>q</mi><mo>)</mo></math></span>. The independence number of this graph was determined in <span><span>[5]</span></span> for <em>n</em> even and given a subspace <em>P</em> of dimension one, the set of all chambers whose subspaces of dimension <span><math><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac></math></span> contain <em>P</em> attains the bound. The dual example of course also attains the bound. It remained open in <span><span>[5]</span></span> whether or not these are all maximum independent sets. Using a description from <span><span>[6]</span></span> of the eigenspace for the smallest eigenvalue of this graph, we prove an Erdős-Ko-Rado theorem on chambers of <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msubsup></math></span> for sufficiently large <em>q</em>, giving an affirmative answer for n even.</div></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"217 ","pages":"Article 106098"},"PeriodicalIF":1.2000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097316525000937","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
A chamber of the vector space is a set of subspaces of where and for . By we denote the graph whose vertices are the chambers of with two chambers and adjacent in , if for . The Erdős-Ko-Rado problem on chambers is equivalent to determining the structure of independent sets of . The independence number of this graph was determined in [5] for n even and given a subspace P of dimension one, the set of all chambers whose subspaces of dimension contain P attains the bound. The dual example of course also attains the bound. It remained open in [5] whether or not these are all maximum independent sets. Using a description from [6] of the eigenspace for the smallest eigenvalue of this graph, we prove an Erdős-Ko-Rado theorem on chambers of for sufficiently large q, giving an affirmative answer for n even.
期刊介绍:
The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.