{"title":"Weak Galerkin spectral element methods for elliptic eigenvalue problems: Lower bound approximation and superconvergence","authors":"Jiajia Pan , Huiyuan Li","doi":"10.1016/j.apnum.2025.07.010","DOIUrl":null,"url":null,"abstract":"<div><div>Lower bound approximation and super-convergence of the weak Galerkin spectral element method for second-order elliptic eigenvalue problems are comprehensively investigated in this paper. At first, we establish the approximation spaces with diverse polynomial degrees of weak functions and weak gradients by using the one-to-one mapping from the reference element to each physical element. General weak Galerkin triangular/quadrilateral spectral element approximation schemes are then proposed for the eigenvalue problem of the second-order elliptic operators. A study on the well-posedness of our schemes is carried out, resulting in the constraint conditions on the polynomial degrees of the discrete weak function space and the discrete weak gradient space. Further, qualitative numerical analysis and numerical investigation are performed on a series of polynomial degree configurations for the weak function space and the weak gradient space. We obtain in the sequel the super-convergence of the numerical eigenvalues with the weak Galerkin spectral element methods for the first time, and discover some lower bound approximation scenario that has never been reported before in literature.</div></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":"218 ","pages":"Pages 182-200"},"PeriodicalIF":2.4000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927425001515","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Lower bound approximation and super-convergence of the weak Galerkin spectral element method for second-order elliptic eigenvalue problems are comprehensively investigated in this paper. At first, we establish the approximation spaces with diverse polynomial degrees of weak functions and weak gradients by using the one-to-one mapping from the reference element to each physical element. General weak Galerkin triangular/quadrilateral spectral element approximation schemes are then proposed for the eigenvalue problem of the second-order elliptic operators. A study on the well-posedness of our schemes is carried out, resulting in the constraint conditions on the polynomial degrees of the discrete weak function space and the discrete weak gradient space. Further, qualitative numerical analysis and numerical investigation are performed on a series of polynomial degree configurations for the weak function space and the weak gradient space. We obtain in the sequel the super-convergence of the numerical eigenvalues with the weak Galerkin spectral element methods for the first time, and discover some lower bound approximation scenario that has never been reported before in literature.
期刊介绍:
The purpose of the journal is to provide a forum for the publication of high quality research and tutorial papers in computational mathematics. In addition to the traditional issues and problems in numerical analysis, the journal also publishes papers describing relevant applications in such fields as physics, fluid dynamics, engineering and other branches of applied science with a computational mathematics component. The journal strives to be flexible in the type of papers it publishes and their format. Equally desirable are:
(i) Full papers, which should be complete and relatively self-contained original contributions with an introduction that can be understood by the broad computational mathematics community. Both rigorous and heuristic styles are acceptable. Of particular interest are papers about new areas of research, in which other than strictly mathematical arguments may be important in establishing a basis for further developments.
(ii) Tutorial review papers, covering some of the important issues in Numerical Mathematics, Scientific Computing and their Applications. The journal will occasionally publish contributions which are larger than the usual format for regular papers.
(iii) Short notes, which present specific new results and techniques in a brief communication.