H. Fribert , L. Fabbietti , P. Gasik , B. Ulukutlu
{"title":"Impact of trace amounts of water on the stability of Micro-Pattern Gaseous Detectors measured in Ar-CO2 (90-10)","authors":"H. Fribert , L. Fabbietti , P. Gasik , B. Ulukutlu","doi":"10.1016/j.nima.2025.170912","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we investigate the influence of humidity on the performance of various non-resistive Micro Pattern Gaseous Detectors, such as GEM, Thick-GEM, and Micromegas, operated with Ar-CO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> (90-10) gas mixture. The water content is introduced in a range of 0–5000<!--> <!-->ppm˙V. It is observed that the presence of increased humidity does not significantly degrade any of the studied performance criteria. On the contrary, our measurements suggest an improvement in discharge stability with increasing humidity levels at the highest gains and fields. No significant difference is observed at the lower gains, indicating that humidity helps to reduce the rate of spurious discharges related to electrode defects or charging-up of the insulating layers. We conclude that adding a small amount of water to the gas mixture may be beneficial for the stable operation of an MPGD.</div></div>","PeriodicalId":19359,"journal":{"name":"Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment","volume":"1082 ","pages":"Article 170912"},"PeriodicalIF":1.4000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168900225007144","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we investigate the influence of humidity on the performance of various non-resistive Micro Pattern Gaseous Detectors, such as GEM, Thick-GEM, and Micromegas, operated with Ar-CO (90-10) gas mixture. The water content is introduced in a range of 0–5000 ppm˙V. It is observed that the presence of increased humidity does not significantly degrade any of the studied performance criteria. On the contrary, our measurements suggest an improvement in discharge stability with increasing humidity levels at the highest gains and fields. No significant difference is observed at the lower gains, indicating that humidity helps to reduce the rate of spurious discharges related to electrode defects or charging-up of the insulating layers. We conclude that adding a small amount of water to the gas mixture may be beneficial for the stable operation of an MPGD.
期刊介绍:
Section A of Nuclear Instruments and Methods in Physics Research publishes papers on design, manufacturing and performance of scientific instruments with an emphasis on large scale facilities. This includes the development of particle accelerators, ion sources, beam transport systems and target arrangements as well as the use of secondary phenomena such as synchrotron radiation and free electron lasers. It also includes all types of instrumentation for the detection and spectrometry of radiations from high energy processes and nuclear decays, as well as instrumentation for experiments at nuclear reactors. Specialized electronics for nuclear and other types of spectrometry as well as computerization of measurements and control systems in this area also find their place in the A section.
Theoretical as well as experimental papers are accepted.