Jie Sun , Fanhao Meng , Ziqiang Wang , Xingjie Zeng , Yi Wen , Shuai Wang , Yingda Lu , Nana Sun , Weidong Li
{"title":"Drag reduction performance in transportation of thermally produced heavy oil by self-generating foam injection","authors":"Jie Sun , Fanhao Meng , Ziqiang Wang , Xingjie Zeng , Yi Wen , Shuai Wang , Yingda Lu , Nana Sun , Weidong Li","doi":"10.1016/j.ijmultiphaseflow.2025.105389","DOIUrl":null,"url":null,"abstract":"<div><div>This work proposes a novel approach utilizing an oil-resistant, thermally stable self-generating foam system to achieve boundary lubrication drag reduction in thermal heavy oil transportation, focusing on the drag reduction characteristics of non-Newtonian self-generating foam and Newtonian oil phases under horizontal pipe co-flow conditions. Experiments were conducted in a 12-m-long, 25-mm-inner-diameter horizontal borosilicate glass pipe with roughened walls, measuring pressure gradients for co-flowing high-viscosity oil and foam at superficial velocities of 0.12–0.65 m/s (oil) and 0.06–0.63 m/s (foam). High-speed imaging identified stratified flow (ST) and eccentric core annular flow (ECAF) as dominant regimes across tested conditions. A three-zone two-phase model was developed for horizontal foam-oil flows, integrating the Carreau-Yasuda rheology of self-generated foam at 60°C. The model demonstrates strong agreement with experimental data over broad operational ranges, confirming that full oil core encapsulation by foam determines the critical foam injection volume fraction for maximum drag reduction. Additionally, optimal oil transport efficiency was linked to specific oil core-to-pipe diameter ratios.</div></div>","PeriodicalId":339,"journal":{"name":"International Journal of Multiphase Flow","volume":"193 ","pages":"Article 105389"},"PeriodicalIF":3.8000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Multiphase Flow","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301932225002666","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
This work proposes a novel approach utilizing an oil-resistant, thermally stable self-generating foam system to achieve boundary lubrication drag reduction in thermal heavy oil transportation, focusing on the drag reduction characteristics of non-Newtonian self-generating foam and Newtonian oil phases under horizontal pipe co-flow conditions. Experiments were conducted in a 12-m-long, 25-mm-inner-diameter horizontal borosilicate glass pipe with roughened walls, measuring pressure gradients for co-flowing high-viscosity oil and foam at superficial velocities of 0.12–0.65 m/s (oil) and 0.06–0.63 m/s (foam). High-speed imaging identified stratified flow (ST) and eccentric core annular flow (ECAF) as dominant regimes across tested conditions. A three-zone two-phase model was developed for horizontal foam-oil flows, integrating the Carreau-Yasuda rheology of self-generated foam at 60°C. The model demonstrates strong agreement with experimental data over broad operational ranges, confirming that full oil core encapsulation by foam determines the critical foam injection volume fraction for maximum drag reduction. Additionally, optimal oil transport efficiency was linked to specific oil core-to-pipe diameter ratios.
期刊介绍:
The International Journal of Multiphase Flow publishes analytical, numerical and experimental articles of lasting interest. The scope of the journal includes all aspects of mass, momentum and energy exchange phenomena among different phases such as occur in disperse flows, gas–liquid and liquid–liquid flows, flows in porous media, boiling, granular flows and others.
The journal publishes full papers, brief communications and conference announcements.