LightHybridNet-Transformer-FFIA: A hybrid Transformer based deep learning model for enhanced fish feeding intensity classification

IF 4.3 2区 农林科学 Q2 AGRICULTURAL ENGINEERING
Usama Iqbal , Daoliang Li , Muhammad Farrukh Qureshi , Zohaib Mushtaq , Hafiz Abbad ur Rehman
{"title":"LightHybridNet-Transformer-FFIA: A hybrid Transformer based deep learning model for enhanced fish feeding intensity classification","authors":"Usama Iqbal ,&nbsp;Daoliang Li ,&nbsp;Muhammad Farrukh Qureshi ,&nbsp;Zohaib Mushtaq ,&nbsp;Hafiz Abbad ur Rehman","doi":"10.1016/j.aquaeng.2025.102604","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate assessment of fish feeding intensity is important for efficient and sustainable aquaculture. This paper introduces LightHybridNet-Transformer-FFIA, a novel and parameter-efficient hybrid neural network for automated fish feeding intensity classification in aquaculture. Addressing the critical need for optimized feed management, our model utilizes the fusion of sonar imagery and Mel spectrograms to accurately assess feeding intensity levels. LightHybridNet-Transformer-FFIA integrates a Convolutional Neural Network branch for spatial feature extraction from sonar images with a Transformer branch for capturing temporal dynamics in Mel spectrograms, fused by a Feature Fusion and Interaction Aggregation (FFIA) module. Evaluated on the MRS-FFIA dataset, our model achieves a high validation accuracy of 95.42% and a macro-averaged F1-score of 95.40%, demonstrating competitive performance against state-of-the-art multi-modal models while utilizing a significantly smaller parameter footprint (0.102 million parameters). The architectural novelty and parameter efficiency of LightHybridNet-Transformer-FFIA present a promising solution for real-time aquaculture monitoring, enabling optimized feed delivery, reduced waste, and improved sustainability. This work highlights the effectiveness of hybrid CNN-Transformer architectures for multi-modal underwater sensing and contributes a practically deployable model for intelligent aquaculture management.</div></div>","PeriodicalId":8120,"journal":{"name":"Aquacultural Engineering","volume":"111 ","pages":"Article 102604"},"PeriodicalIF":4.3000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquacultural Engineering","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0144860925000937","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate assessment of fish feeding intensity is important for efficient and sustainable aquaculture. This paper introduces LightHybridNet-Transformer-FFIA, a novel and parameter-efficient hybrid neural network for automated fish feeding intensity classification in aquaculture. Addressing the critical need for optimized feed management, our model utilizes the fusion of sonar imagery and Mel spectrograms to accurately assess feeding intensity levels. LightHybridNet-Transformer-FFIA integrates a Convolutional Neural Network branch for spatial feature extraction from sonar images with a Transformer branch for capturing temporal dynamics in Mel spectrograms, fused by a Feature Fusion and Interaction Aggregation (FFIA) module. Evaluated on the MRS-FFIA dataset, our model achieves a high validation accuracy of 95.42% and a macro-averaged F1-score of 95.40%, demonstrating competitive performance against state-of-the-art multi-modal models while utilizing a significantly smaller parameter footprint (0.102 million parameters). The architectural novelty and parameter efficiency of LightHybridNet-Transformer-FFIA present a promising solution for real-time aquaculture monitoring, enabling optimized feed delivery, reduced waste, and improved sustainability. This work highlights the effectiveness of hybrid CNN-Transformer architectures for multi-modal underwater sensing and contributes a practically deployable model for intelligent aquaculture management.
LightHybridNet-Transformer-FFIA:一种基于混合Transformer的深度学习模型,用于增强鱼类摄食强度分类
准确评估鱼类摄食强度对水产养殖的高效和可持续发展至关重要。介绍了一种用于水产养殖中鱼类投喂强度自动分类的新型、参数高效的混合神经网络LightHybridNet-Transformer-FFIA。为了解决优化饲料管理的关键需求,我们的模型利用声纳图像和Mel谱图的融合来准确评估喂食强度水平。LightHybridNet-Transformer-FFIA集成了用于从声纳图像中提取空间特征的卷积神经网络分支和用于捕获Mel频谱图中的时间动态的Transformer分支,并通过特征融合和交互聚合(FFIA)模块进行融合。在MRS-FFIA数据集上进行评估,我们的模型达到了95.42%的高验证精度和95.40%的宏观平均f1分数,与最先进的多模态模型相比表现出竞争力,同时使用了显着更小的参数足迹(0.10.2万个参数)。LightHybridNet-Transformer-FFIA的建筑新颖性和参数效率为实时水产养殖监测提供了一个有前途的解决方案,可以优化饲料输送,减少浪费,提高可持续性。这项工作突出了混合CNN-Transformer架构在多模态水下传感中的有效性,并为智能水产养殖管理提供了一个实际可部署的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Aquacultural Engineering
Aquacultural Engineering 农林科学-农业工程
CiteScore
8.60
自引率
10.00%
发文量
63
审稿时长
>24 weeks
期刊介绍: Aquacultural Engineering is concerned with the design and development of effective aquacultural systems for marine and freshwater facilities. The journal aims to apply the knowledge gained from basic research which potentially can be translated into commercial operations. Problems of scale-up and application of research data involve many parameters, both physical and biological, making it difficult to anticipate the interaction between the unit processes and the cultured animals. Aquacultural Engineering aims to develop this bioengineering interface for aquaculture and welcomes contributions in the following areas: – Engineering and design of aquaculture facilities – Engineering-based research studies – Construction experience and techniques – In-service experience, commissioning, operation – Materials selection and their uses – Quantification of biological data and constraints
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信