Dynamics near homoclinic orbits to a saddle in four-dimensional systems with a first integral and a discrete symmetry

IF 2.3 2区 数学 Q1 MATHEMATICS
Sajjad Bakrani
{"title":"Dynamics near homoclinic orbits to a saddle in four-dimensional systems with a first integral and a discrete symmetry","authors":"Sajjad Bakrani","doi":"10.1016/j.jde.2025.113689","DOIUrl":null,"url":null,"abstract":"<div><div>We consider a <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-equivariant 4-dimensional system of ODEs with a smooth first integral <em>H</em> and a saddle equilibrium state <em>O</em>. We assume that there exists a transverse homoclinic orbit Γ to <em>O</em> that approaches <em>O</em> along the nonleading directions. Suppose <span><math><mi>H</mi><mo>(</mo><mi>O</mi><mo>)</mo><mo>=</mo><mi>c</mi></math></span>. In <span><span>[3]</span></span>, the dynamics near Γ in the level set <span><math><msup><mrow><mi>H</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>(</mo><mi>c</mi><mo>)</mo></math></span> was described. In particular, some criteria for the existence of the stable and unstable invariant manifolds of Γ were given. In the current paper, we describe the dynamics near Γ in the level set <span><math><msup><mrow><mi>H</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>(</mo><mi>h</mi><mo>)</mo></math></span> for <span><math><mi>h</mi><mo>≠</mo><mi>c</mi></math></span> close to <em>c</em>. We prove that when <span><math><mi>h</mi><mo>&lt;</mo><mi>c</mi></math></span>, there exists a unique saddle periodic orbit in each level set <span><math><msup><mrow><mi>H</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>(</mo><mi>h</mi><mo>)</mo></math></span>, and the forward (resp. backward) orbit of any point off the stable (resp. unstable) invariant manifold of this periodic orbit leaves a small neighborhood of Γ. We further show that when <span><math><mi>h</mi><mo>&gt;</mo><mi>c</mi></math></span>, the forward and backward orbits of any point in <span><math><msup><mrow><mi>H</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>(</mo><mi>h</mi><mo>)</mo></math></span> near Γ leave a small neighborhood of Γ. We also prove analogous results for the scenario where two transverse homoclinics to <em>O</em> (homoclinic figure-eight) exist. The results of this paper, together with [3], give a full description of the dynamics in a small open neighborhood of Γ (and a small open neighborhood of a homoclinic figure-eight). An application to a system of coupled Schrödinger equations with cubic nonlinearity is also considered.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"446 ","pages":"Article 113689"},"PeriodicalIF":2.3000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625007168","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider a Z2-equivariant 4-dimensional system of ODEs with a smooth first integral H and a saddle equilibrium state O. We assume that there exists a transverse homoclinic orbit Γ to O that approaches O along the nonleading directions. Suppose H(O)=c. In [3], the dynamics near Γ in the level set H1(c) was described. In particular, some criteria for the existence of the stable and unstable invariant manifolds of Γ were given. In the current paper, we describe the dynamics near Γ in the level set H1(h) for hc close to c. We prove that when h<c, there exists a unique saddle periodic orbit in each level set H1(h), and the forward (resp. backward) orbit of any point off the stable (resp. unstable) invariant manifold of this periodic orbit leaves a small neighborhood of Γ. We further show that when h>c, the forward and backward orbits of any point in H1(h) near Γ leave a small neighborhood of Γ. We also prove analogous results for the scenario where two transverse homoclinics to O (homoclinic figure-eight) exist. The results of this paper, together with [3], give a full description of the dynamics in a small open neighborhood of Γ (and a small open neighborhood of a homoclinic figure-eight). An application to a system of coupled Schrödinger equations with cubic nonlinearity is also considered.
具有第一积分和离散对称的四维系统中鞍形同斜轨道附近的动力学
我们考虑一个具有光滑第一积分H和鞍态平衡态O的z2等变四维ode系统。我们假设存在一个到O的横向同斜轨道Γ,沿非导向趋近于O。假设H (O) = c。在[3]中,描述了水平集H−1(c) Γ附近的动力学。特别地,给出了Γ稳定和不稳定不变流形存在的一些判据。本文描述了水平集H−1(H)中,当H≠c接近c时,在Γ附近的动力学。证明了当H <;c时,在每一个水平集H−1(H)中存在一个唯一的鞍形周期轨道,且正演周期轨道(resp;(向后)偏离稳定点的任何一点的轨道。这个周期轨道的不稳定不变流形留下了一个小的Γ邻域。我们进一步证明,当H >;c时,在Γ附近的H−1(H)中任何一点的正反向轨道都会离开一个小的Γ邻域。我们还证明了存在两个横向同斜到O(同斜图8)的情形的类似结果。本文的结果与[3]一起,给出了Γ小开放邻域(以及同斜数字8的小开放邻域)内动力学的完整描述。本文还考虑了一个三次非线性耦合Schrödinger方程系统的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信