On symmetry solutions of nonlocal complex coupled dispersionless system using Darboux transformation and artificial neural networks

IF 4.6 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Aamir Farooq , H.W.A. Riaz , Wen Xiu Ma
{"title":"On symmetry solutions of nonlocal complex coupled dispersionless system using Darboux transformation and artificial neural networks","authors":"Aamir Farooq ,&nbsp;H.W.A. Riaz ,&nbsp;Wen Xiu Ma","doi":"10.1016/j.cjph.2025.07.021","DOIUrl":null,"url":null,"abstract":"<div><div>The generalized coupled dispersionless equations describe the dynamics of a current-fed string in an external magnetic field. This study introduces a novel methodology leveraging the Darboux transformation to derive analytical solutions for these complex equations. The approach explores symmetry-preserving and non-preserving solutions, further refined using the Levenberg–Marquardt algorithm within a neural network framework. The network underwent thorough validation using relative <span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> errors during training and testing on clean and noisy data. During this validation, thorough tabular and graphical representations validated our analytical results, proving their reliability. We carefully analyzed the solution behaviors using various visualization techniques, such as contours, three-dimensional plots, and corresponding error graphs. This study comprehensively analyzes the system’s dynamics by integrating analytical methods with artificial neural networks, bridging theoretical predictions with empirical validations. The findings offer new insights into wave behavior, stability, and nonlinear interactions within the system, contributing significantly to mathematical physics.</div></div>","PeriodicalId":10340,"journal":{"name":"Chinese Journal of Physics","volume":"97 ","pages":"Pages 933-947"},"PeriodicalIF":4.6000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0577907325002886","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The generalized coupled dispersionless equations describe the dynamics of a current-fed string in an external magnetic field. This study introduces a novel methodology leveraging the Darboux transformation to derive analytical solutions for these complex equations. The approach explores symmetry-preserving and non-preserving solutions, further refined using the Levenberg–Marquardt algorithm within a neural network framework. The network underwent thorough validation using relative L2 errors during training and testing on clean and noisy data. During this validation, thorough tabular and graphical representations validated our analytical results, proving their reliability. We carefully analyzed the solution behaviors using various visualization techniques, such as contours, three-dimensional plots, and corresponding error graphs. This study comprehensively analyzes the system’s dynamics by integrating analytical methods with artificial neural networks, bridging theoretical predictions with empirical validations. The findings offer new insights into wave behavior, stability, and nonlinear interactions within the system, contributing significantly to mathematical physics.

Abstract Image

用达布变换和人工神经网络研究非局部复耦合无色散系统的对称解
广义耦合无色散方程描述了电流馈电弦在外磁场中的动力学特性。本研究引入了一种新的方法,利用达布变换来推导这些复杂方程的解析解。该方法探索了对称性保持和非对称性解决方案,并在神经网络框架内使用Levenberg-Marquardt算法进一步改进。在训练和测试干净和有噪声的数据时,使用相对L2误差对网络进行了彻底的验证。在验证过程中,全面的表格和图形表示验证了我们的分析结果,证明了它们的可靠性。我们使用各种可视化技术,如等高线、三维图和相应的误差图,仔细分析了解的行为。本研究通过将分析方法与人工神经网络相结合,将理论预测与经验验证相结合,全面分析了系统的动力学。这些发现为波的行为、稳定性和系统内的非线性相互作用提供了新的见解,对数学物理有重大贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chinese Journal of Physics
Chinese Journal of Physics 物理-物理:综合
CiteScore
8.50
自引率
10.00%
发文量
361
审稿时长
44 days
期刊介绍: The Chinese Journal of Physics publishes important advances in various branches in physics, including statistical and biophysical physics, condensed matter physics, atomic/molecular physics, optics, particle physics and nuclear physics. The editors welcome manuscripts on: -General Physics: Statistical and Quantum Mechanics, etc.- Gravitation and Astrophysics- Elementary Particles and Fields- Nuclear Physics- Atomic, Molecular, and Optical Physics- Quantum Information and Quantum Computation- Fluid Dynamics, Nonlinear Dynamics, Chaos, and Complex Networks- Plasma and Beam Physics- Condensed Matter: Structure, etc.- Condensed Matter: Electronic Properties, etc.- Polymer, Soft Matter, Biological, and Interdisciplinary Physics. CJP publishes regular research papers, feature articles and review papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信