Distribution assessment-based multiple over-sampling with evidence fusion for imbalanced data classification

IF 3 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Hongpeng Tian , Zuowei Zhang , Zhunga Liu , Jingwei Zuo , Caixing Yang
{"title":"Distribution assessment-based multiple over-sampling with evidence fusion for imbalanced data classification","authors":"Hongpeng Tian ,&nbsp;Zuowei Zhang ,&nbsp;Zhunga Liu ,&nbsp;Jingwei Zuo ,&nbsp;Caixing Yang","doi":"10.1016/j.ijar.2025.109538","DOIUrl":null,"url":null,"abstract":"<div><div>Over-sampling methods concentrate on creating balanced samples and have proven successful in classifying imbalanced data. However, current over-sampling methods fail to consider the uncertainty of produced samples, potentially altering the data distribution and impacting the classification process. To address this issue, we propose a distribution assessment-based multiple over-sampling (DAMO) method for classifying imbalanced data. We first introduce a multiple over-sampling method based on distribution assessment to create different forms of synthetic samples. The core is quantifying the inconsistency of data distribution before and after sampling as a constraint to guide multiple over-sampling, thereby minimizing the data shift and characterizing the uncertainty of produced samples. Then, we quantify the local reliability of the classification results and select several imprecise samples with low local reliability that are indistinguishable between classes. Neighbors serve as additional complementary information to calibrate the results of imprecise samples, thereby reducing the likelihood of misclassification. The calibrated results are combined by the discounting Dempster-Shafer fusion rule to make a final decision. DAMO's efficiency has been demonstrated through comparisons with related methods on various real imbalanced datasets.</div></div>","PeriodicalId":13842,"journal":{"name":"International Journal of Approximate Reasoning","volume":"187 ","pages":"Article 109538"},"PeriodicalIF":3.0000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Approximate Reasoning","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0888613X25001793","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Over-sampling methods concentrate on creating balanced samples and have proven successful in classifying imbalanced data. However, current over-sampling methods fail to consider the uncertainty of produced samples, potentially altering the data distribution and impacting the classification process. To address this issue, we propose a distribution assessment-based multiple over-sampling (DAMO) method for classifying imbalanced data. We first introduce a multiple over-sampling method based on distribution assessment to create different forms of synthetic samples. The core is quantifying the inconsistency of data distribution before and after sampling as a constraint to guide multiple over-sampling, thereby minimizing the data shift and characterizing the uncertainty of produced samples. Then, we quantify the local reliability of the classification results and select several imprecise samples with low local reliability that are indistinguishable between classes. Neighbors serve as additional complementary information to calibrate the results of imprecise samples, thereby reducing the likelihood of misclassification. The calibrated results are combined by the discounting Dempster-Shafer fusion rule to make a final decision. DAMO's efficiency has been demonstrated through comparisons with related methods on various real imbalanced datasets.
基于分布评估的多重过采样与证据融合的不平衡数据分类
过度抽样方法专注于创建平衡样本,并已被证明在分类不平衡数据方面是成功的。然而,目前的过度抽样方法没有考虑到产生样本的不确定性,这可能会改变数据分布并影响分类过程。为了解决这个问题,我们提出了一种基于分布评估的多重过采样(DAMO)方法来对不平衡数据进行分类。我们首先介绍了基于分布评估的多重过采样方法来创建不同形式的合成样本。其核心是量化采样前后数据分布的不一致性,作为约束来指导多次过采样,从而最大限度地减少数据的移位,表征所产生样本的不确定性。然后,对分类结果的局部信度进行量化,选取局部信度较低且类间无法区分的不精确样本。邻域作为额外的补充信息来校准不精确样本的结果,从而减少误分类的可能性。将标定结果结合贴现Dempster-Shafer融合规则进行最终决策。通过与相关方法在各种实际不平衡数据集上的比较,证明了DAMO的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Approximate Reasoning
International Journal of Approximate Reasoning 工程技术-计算机:人工智能
CiteScore
6.90
自引率
12.80%
发文量
170
审稿时长
67 days
期刊介绍: The International Journal of Approximate Reasoning is intended to serve as a forum for the treatment of imprecision and uncertainty in Artificial and Computational Intelligence, covering both the foundations of uncertainty theories, and the design of intelligent systems for scientific and engineering applications. It publishes high-quality research papers describing theoretical developments or innovative applications, as well as review articles on topics of general interest. Relevant topics include, but are not limited to, probabilistic reasoning and Bayesian networks, imprecise probabilities, random sets, belief functions (Dempster-Shafer theory), possibility theory, fuzzy sets, rough sets, decision theory, non-additive measures and integrals, qualitative reasoning about uncertainty, comparative probability orderings, game-theoretic probability, default reasoning, nonstandard logics, argumentation systems, inconsistency tolerant reasoning, elicitation techniques, philosophical foundations and psychological models of uncertain reasoning. Domains of application for uncertain reasoning systems include risk analysis and assessment, information retrieval and database design, information fusion, machine learning, data and web mining, computer vision, image and signal processing, intelligent data analysis, statistics, multi-agent systems, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信