Rachel Y. Sheppard , Jessica M. Weber , Laura E. Rodriguez , Cathy Trejo , Elisabeth M. Hausrath , Laura M. Barge
{"title":"The effect of clay minerals on Li in martian groundwater simulant","authors":"Rachel Y. Sheppard , Jessica M. Weber , Laura E. Rodriguez , Cathy Trejo , Elisabeth M. Hausrath , Laura M. Barge","doi":"10.1016/j.icarus.2025.116769","DOIUrl":null,"url":null,"abstract":"<div><div>The high mobility of Li allows it to be used as a tracer for groundwater processes, recording past aqueous conditions. On Earth, a relationship has been noted in multiple field sites between clay mineral abundances and elevated Li in bedrock. Observations from the Curiosity MSL mission at Gale crater on Mars showed a high-clay mineral and high-Li area near the Vera Rubin ridge (VRR) and Glen Torridon region, suggesting Li was perhaps substituting into clay minerals as was seen in these terrestrial field settings. However, the process of this substitution has not been examined in the laboratory using non-field samples, especially not with Mars-relevant mineralogy. To investigate this open question in the laboratory using Mars-relevant regolith and clay minerals, we conducted continuous flow packed-bed reactor experiments to test whether clay minerals affect the Li concentration of Mars regolith simulant MGS-1 during aqueous alteration. The mechanism for Li sorption was also investigated by conducting experiments with clays mixed with glass beads and investigating changes in other elements alongside Li via laser-induced breakdown spectroscopy (LIBS). We tested four dioctahedral clay minerals (kaolinite, illite, nontronite, mixed layer illite/smectite) and two trioctahedral clay minerals (talc, saponite) and found that both talc and illite are capable of increasing the amount of Li sorbed compared to MGS-1 simulant when exposed to Li-bearing groundwater. For MGS-1, the glass beads, and the clay minerals (talc, illite) the primary mechanism appears to be Li substitution for Mg, Al, and K, respectively. This has implications for ongoing Mars missions as well as astrobiology, specifically relating to understanding habitability of areas on Mars and identifying aqueous environments for future mission concepts.</div></div>","PeriodicalId":13199,"journal":{"name":"Icarus","volume":"443 ","pages":"Article 116769"},"PeriodicalIF":3.0000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Icarus","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019103525003173","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The high mobility of Li allows it to be used as a tracer for groundwater processes, recording past aqueous conditions. On Earth, a relationship has been noted in multiple field sites between clay mineral abundances and elevated Li in bedrock. Observations from the Curiosity MSL mission at Gale crater on Mars showed a high-clay mineral and high-Li area near the Vera Rubin ridge (VRR) and Glen Torridon region, suggesting Li was perhaps substituting into clay minerals as was seen in these terrestrial field settings. However, the process of this substitution has not been examined in the laboratory using non-field samples, especially not with Mars-relevant mineralogy. To investigate this open question in the laboratory using Mars-relevant regolith and clay minerals, we conducted continuous flow packed-bed reactor experiments to test whether clay minerals affect the Li concentration of Mars regolith simulant MGS-1 during aqueous alteration. The mechanism for Li sorption was also investigated by conducting experiments with clays mixed with glass beads and investigating changes in other elements alongside Li via laser-induced breakdown spectroscopy (LIBS). We tested four dioctahedral clay minerals (kaolinite, illite, nontronite, mixed layer illite/smectite) and two trioctahedral clay minerals (talc, saponite) and found that both talc and illite are capable of increasing the amount of Li sorbed compared to MGS-1 simulant when exposed to Li-bearing groundwater. For MGS-1, the glass beads, and the clay minerals (talc, illite) the primary mechanism appears to be Li substitution for Mg, Al, and K, respectively. This has implications for ongoing Mars missions as well as astrobiology, specifically relating to understanding habitability of areas on Mars and identifying aqueous environments for future mission concepts.
期刊介绍:
Icarus is devoted to the publication of original contributions in the field of Solar System studies. Manuscripts reporting the results of new research - observational, experimental, or theoretical - concerning the astronomy, geology, meteorology, physics, chemistry, biology, and other scientific aspects of our Solar System or extrasolar systems are welcome. The journal generally does not publish papers devoted exclusively to the Sun, the Earth, celestial mechanics, meteoritics, or astrophysics. Icarus does not publish papers that provide "improved" versions of Bode''s law, or other numerical relations, without a sound physical basis. Icarus does not publish meeting announcements or general notices. Reviews, historical papers, and manuscripts describing spacecraft instrumentation may be considered, but only with prior approval of the editor. An entire issue of the journal is occasionally devoted to a single subject, usually arising from a conference on the same topic. The language of publication is English. American or British usage is accepted, but not a mixture of these.