Antônio Oliveira-Filho , Wellington Silva-de-Souza , Carlos Alberto Valderrama Sakuyama , Samuel Xavier-de-Souza
{"title":"Phoeni6: A systematic approach for evaluating the energy consumption of neural networks","authors":"Antônio Oliveira-Filho , Wellington Silva-de-Souza , Carlos Alberto Valderrama Sakuyama , Samuel Xavier-de-Souza","doi":"10.1016/j.suscom.2025.101172","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents Phoeni6, a systematic approach for assessing the energy consumption of neural networks while upholding the principles of fair comparison and reproducibility. Phoeni6 offers a comprehensive solution for managing energy-related data and configurations, ensuring portability, transparency, and coordination during evaluations. The methodology automates energy evaluations through containerized tools, robust database management, and versatile data models. In the first case study, the energy consumption of AlexNet and MobileNet was compared using raw and resized images. Results showed that MobileNet is up to 6.25% more energy-efficient for raw images and 2.32% for resized datasets, while maintaining competitive accuracy levels. In the second study, the impact of image file formats on energy consumption was evaluated. BMP images reduced energy usage by up to 30% compared to PNG, highlighting the influence of file formats on energy efficiency. These findings emphasize the importance of Phoeni6 in optimizing energy consumption for diverse neural network applications and establishing sustainable artificial intelligence practices.</div></div>","PeriodicalId":48686,"journal":{"name":"Sustainable Computing-Informatics & Systems","volume":"47 ","pages":"Article 101172"},"PeriodicalIF":5.7000,"publicationDate":"2025-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Computing-Informatics & Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210537925000939","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents Phoeni6, a systematic approach for assessing the energy consumption of neural networks while upholding the principles of fair comparison and reproducibility. Phoeni6 offers a comprehensive solution for managing energy-related data and configurations, ensuring portability, transparency, and coordination during evaluations. The methodology automates energy evaluations through containerized tools, robust database management, and versatile data models. In the first case study, the energy consumption of AlexNet and MobileNet was compared using raw and resized images. Results showed that MobileNet is up to 6.25% more energy-efficient for raw images and 2.32% for resized datasets, while maintaining competitive accuracy levels. In the second study, the impact of image file formats on energy consumption was evaluated. BMP images reduced energy usage by up to 30% compared to PNG, highlighting the influence of file formats on energy efficiency. These findings emphasize the importance of Phoeni6 in optimizing energy consumption for diverse neural network applications and establishing sustainable artificial intelligence practices.
期刊介绍:
Sustainable computing is a rapidly expanding research area spanning the fields of computer science and engineering, electrical engineering as well as other engineering disciplines. The aim of Sustainable Computing: Informatics and Systems (SUSCOM) is to publish the myriad research findings related to energy-aware and thermal-aware management of computing resource. Equally important is a spectrum of related research issues such as applications of computing that can have ecological and societal impacts. SUSCOM publishes original and timely research papers and survey articles in current areas of power, energy, temperature, and environment related research areas of current importance to readers. SUSCOM has an editorial board comprising prominent researchers from around the world and selects competitively evaluated peer-reviewed papers.