From approach to avoidance: How AI agent cognitive and affective empathy elicits the uncanny valley effect

IF 8.3 2区 管理学 Q1 INFORMATION SCIENCE & LIBRARY SCIENCE
Shuai Zhang , Yuxing Qian , Zhizhen Yao , Zhenni Ni , Yang Zhang
{"title":"From approach to avoidance: How AI agent cognitive and affective empathy elicits the uncanny valley effect","authors":"Shuai Zhang ,&nbsp;Yuxing Qian ,&nbsp;Zhizhen Yao ,&nbsp;Zhenni Ni ,&nbsp;Yang Zhang","doi":"10.1016/j.tele.2025.102313","DOIUrl":null,"url":null,"abstract":"<div><div>The empathy expressed by AI agents is crucial in human-AI interactions, especially within mental health contexts. However, the mechanisms underlying users’ responses to cognitive and affective empathy from AI agents are not well understood. This study examines the theoretical mechanisms and boundary conditions that determine how AI empathy influences users’ approach-avoidance intentions. Drawing on the computers are social actors (CASA) paradigm and the uncanny valley effect (UVE), we propose a moderated dual mediation model. This model is empirically tested using two experimental studies. The results reveal distinct pathways by which cognitive and affective empathy affect approach-avoidance intentions. Specifically, cognitive empathy primarily influences approach-avoidance intentions via perceived novelty, whereas affective empathy exerts its effect through perceived warmth. Additionally, perceived warmth and eeriness together mediate the impact of affective empathy on approach-avoidance intentions. Notably, mindful AI agents strengthen the effect of affective empathy on the UVE but diminish the influence of cognitive empathy on approach-avoidance intentions, relative to mindless agents. These findings provide important insights for AI designers and companies seeking to develop empathetic, user-centered conversational agents for mental health applications.</div></div>","PeriodicalId":48257,"journal":{"name":"Telematics and Informatics","volume":"101 ","pages":"Article 102313"},"PeriodicalIF":8.3000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Telematics and Informatics","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0736585325000759","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INFORMATION SCIENCE & LIBRARY SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The empathy expressed by AI agents is crucial in human-AI interactions, especially within mental health contexts. However, the mechanisms underlying users’ responses to cognitive and affective empathy from AI agents are not well understood. This study examines the theoretical mechanisms and boundary conditions that determine how AI empathy influences users’ approach-avoidance intentions. Drawing on the computers are social actors (CASA) paradigm and the uncanny valley effect (UVE), we propose a moderated dual mediation model. This model is empirically tested using two experimental studies. The results reveal distinct pathways by which cognitive and affective empathy affect approach-avoidance intentions. Specifically, cognitive empathy primarily influences approach-avoidance intentions via perceived novelty, whereas affective empathy exerts its effect through perceived warmth. Additionally, perceived warmth and eeriness together mediate the impact of affective empathy on approach-avoidance intentions. Notably, mindful AI agents strengthen the effect of affective empathy on the UVE but diminish the influence of cognitive empathy on approach-avoidance intentions, relative to mindless agents. These findings provide important insights for AI designers and companies seeking to develop empathetic, user-centered conversational agents for mental health applications.
从接近到回避:人工智能代理认知和情感同理心如何引发恐怖谷效应
人工智能代理表达的同理心在人类与人工智能的互动中至关重要,尤其是在心理健康背景下。然而,用户对人工智能代理的认知和情感共情反应的机制尚未得到很好的理解。本研究探讨了人工智能共情如何影响用户避近意图的理论机制和边界条件。借鉴计算机是社会行动者(CASA)范式和恐怖谷效应(UVE),我们提出了一个有调节的双重中介模型。通过两个实验研究对该模型进行了实证检验。研究结果揭示了认知共情和情感共情影响避近意图的不同途径。其中,认知共情主要通过感知新颖性影响避近意向,而情感共情主要通过感知温暖性影响避近意向。此外,感知到的温暖和怪异共同介导情感共情对方法回避意图的影响。值得注意的是,相对于无意识的智能体,有意识的人工智能智能体增强了情感共情对UVE的影响,但减弱了认知共情对接近回避意图的影响。这些发现为人工智能设计师和公司寻求为心理健康应用开发同理心、以用户为中心的对话代理提供了重要的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Telematics and Informatics
Telematics and Informatics INFORMATION SCIENCE & LIBRARY SCIENCE-
CiteScore
17.00
自引率
4.70%
发文量
104
审稿时长
24 days
期刊介绍: Telematics and Informatics is an interdisciplinary journal that publishes cutting-edge theoretical and methodological research exploring the social, economic, geographic, political, and cultural impacts of digital technologies. It covers various application areas, such as smart cities, sensors, information fusion, digital society, IoT, cyber-physical technologies, privacy, knowledge management, distributed work, emergency response, mobile communications, health informatics, social media's psychosocial effects, ICT for sustainable development, blockchain, e-commerce, and e-government.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信