Graph-theoretic characterization of rings: Outer multiset dimension of zero-divisor graphs

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Amina Riaz , Hafiz Muhammad Afzal Siddiqui , Nasir Ali
{"title":"Graph-theoretic characterization of rings: Outer multiset dimension of zero-divisor graphs","authors":"Amina Riaz ,&nbsp;Hafiz Muhammad Afzal Siddiqui ,&nbsp;Nasir Ali","doi":"10.1016/j.dam.2025.08.022","DOIUrl":null,"url":null,"abstract":"<div><div>A finite unital commutative ring (UCR) is denoted by <span><math><mi>A</mi></math></span>. The elements <span><math><mrow><mi>ζ</mi><mo>≠</mo><mn>0</mn><mo>,</mo><mi>η</mi><mo>≠</mo><mn>0</mn></mrow></math></span> in <span><math><mi>A</mi></math></span> are zero divisors if their product satisfies <span><math><mrow><mi>ζ</mi><mi>⋅</mi><mi>η</mi><mo>=</mo><mn>0</mn></mrow></math></span>. The set of zero divisor graph in <span><math><mi>A</mi></math></span> is denoted by <span><math><mrow><mi>D</mi><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow></mrow></math></span>. A zero divisor graph is constructed using <span><math><mrow><mi>D</mi><mrow><mo>(</mo><mi>A</mi><mo>)</mo></mrow></mrow></math></span> in order to analyze various algebraic properties. In this article, we characterize the rings based on Outer multiset dimension (OMdim) of their associated zero divisor graphs. For this purpose, we study the zero divisor graphs of rings, including the ring of Gaussian integers modulo <span><math><mi>m</mi></math></span>, <span><math><mrow><msub><mrow><mi>ℨ</mi></mrow><mrow><mi>m</mi></mrow></msub><mrow><mo>[</mo><mi>i</mi><mo>]</mo></mrow></mrow></math></span>, the ring of integers modulo <span><math><mi>n</mi></math></span>, <span><math><msub><mrow><mi>ℨ</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, and certain quotient polynomial rings. Also particularly, we study the OMdim of zero divisor graphs of ring <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> for all values of <span><math><mi>n</mi></math></span>.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"377 ","pages":"Pages 436-444"},"PeriodicalIF":1.0000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25004652","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

A finite unital commutative ring (UCR) is denoted by A. The elements ζ0,η0 in A are zero divisors if their product satisfies ζη=0. The set of zero divisor graph in A is denoted by D(A). A zero divisor graph is constructed using D(A) in order to analyze various algebraic properties. In this article, we characterize the rings based on Outer multiset dimension (OMdim) of their associated zero divisor graphs. For this purpose, we study the zero divisor graphs of rings, including the ring of Gaussian integers modulo m, m[i], the ring of integers modulo n, n, and certain quotient polynomial rings. Also particularly, we study the OMdim of zero divisor graphs of ring Zn for all values of n.
环的图论表征:零因子图的外多集维
有限单位交换环(UCR)用A表示,如果A中元素ζ≠0,η≠0的乘积满足ζ⋅η=0,则它们是零因子。A中的零因子图集合用D(A)表示。为了分析各种代数性质,利用D(A)构造了一个零因子图。在本文中,我们基于环的相关零因子图的外多集维(OMdim)来表征环。为此,我们研究了环的零因子图,包括模为m、 m m[i]的高斯整数环,模为n、 n的整数环,以及某些商多项式环。特别地,我们研究了环Zn的零因子图对所有n值的极值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信