Sara Pourshahrestani , Irem Unalan , Ehsan Zeimaran , Zhiyan Xu , Judith A. Roether , Andrea Kerpes , Christina Janko , Christoph Alexiou , Aldo R. Boccaccini
{"title":"Tannic acid-loaded zinc- and copper-doped mesoporous bioactive glass nanoparticles: Potential antioxidant nanocarriers for wound healing","authors":"Sara Pourshahrestani , Irem Unalan , Ehsan Zeimaran , Zhiyan Xu , Judith A. Roether , Andrea Kerpes , Christina Janko , Christoph Alexiou , Aldo R. Boccaccini","doi":"10.1016/j.bioactmat.2025.07.046","DOIUrl":null,"url":null,"abstract":"<div><div>Polyphenols such as tannic acid (TA) with antibacterial and antioxidant activities have recently attracted significant attention for wound healing applications. Mesoporous bioactive glass nanoparticles (MBGNs) have also garnered considerable interest to be employed as nanocarriers of therapeutic biomolecules. This study focuses on the fabrication of TA-loaded MBGNs which were doped with two well-known biologically active elements, copper (Cu) and zinc (Zn). The effect of TA loading on the antioxidant and biological properties of the nanoparticles was investigated in the context of potential wound healing applications. As proven with various techniques, TA was successfully loaded on CuMBGNs and ZnMBGNs. With increasing TA concentration, the phenolic content in the nanoparticles was found to increase and CuMBGNs-TA and ZnMBGNs-TA were found to possess 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity. The nanoparticles not only showed biocompatibility towards normal human dermal fibroblast (NHDF) cells, but they were also found to be hemocompatible. In comparison to CuMBGNs-TA leachates resulting in <em>in vitro</em> wound closure rate of ∼66 %–∼83 %, the dissolution products of ZnMBGNs-TA led to higher wound closure rate (>90 %). Our results demonstrate that CuMBGNs or ZnMBGNs are suitable nanocarriers for antioxidant TA and are candidates to promote wound healing.</div></div>","PeriodicalId":8762,"journal":{"name":"Bioactive Materials","volume":"54 ","pages":"Pages 71-85"},"PeriodicalIF":18.0000,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioactive Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452199X25003469","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Polyphenols such as tannic acid (TA) with antibacterial and antioxidant activities have recently attracted significant attention for wound healing applications. Mesoporous bioactive glass nanoparticles (MBGNs) have also garnered considerable interest to be employed as nanocarriers of therapeutic biomolecules. This study focuses on the fabrication of TA-loaded MBGNs which were doped with two well-known biologically active elements, copper (Cu) and zinc (Zn). The effect of TA loading on the antioxidant and biological properties of the nanoparticles was investigated in the context of potential wound healing applications. As proven with various techniques, TA was successfully loaded on CuMBGNs and ZnMBGNs. With increasing TA concentration, the phenolic content in the nanoparticles was found to increase and CuMBGNs-TA and ZnMBGNs-TA were found to possess 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity. The nanoparticles not only showed biocompatibility towards normal human dermal fibroblast (NHDF) cells, but they were also found to be hemocompatible. In comparison to CuMBGNs-TA leachates resulting in in vitro wound closure rate of ∼66 %–∼83 %, the dissolution products of ZnMBGNs-TA led to higher wound closure rate (>90 %). Our results demonstrate that CuMBGNs or ZnMBGNs are suitable nanocarriers for antioxidant TA and are candidates to promote wound healing.
Bioactive MaterialsBiochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
28.00
自引率
6.30%
发文量
436
审稿时长
20 days
期刊介绍:
Bioactive Materials is a peer-reviewed research publication that focuses on advancements in bioactive materials. The journal accepts research papers, reviews, and rapid communications in the field of next-generation biomaterials that interact with cells, tissues, and organs in various living organisms.
The primary goal of Bioactive Materials is to promote the science and engineering of biomaterials that exhibit adaptiveness to the biological environment. These materials are specifically designed to stimulate or direct appropriate cell and tissue responses or regulate interactions with microorganisms.
The journal covers a wide range of bioactive materials, including those that are engineered or designed in terms of their physical form (e.g. particulate, fiber), topology (e.g. porosity, surface roughness), or dimensions (ranging from macro to nano-scales). Contributions are sought from the following categories of bioactive materials:
Bioactive metals and alloys
Bioactive inorganics: ceramics, glasses, and carbon-based materials
Bioactive polymers and gels
Bioactive materials derived from natural sources
Bioactive composites
These materials find applications in human and veterinary medicine, such as implants, tissue engineering scaffolds, cell/drug/gene carriers, as well as imaging and sensing devices.