{"title":"Irreducibility of polynomials with square coefficients over finite fields","authors":"Lior Bary-Soroker, Roy Shmueli","doi":"10.1016/j.ffa.2025.102714","DOIUrl":null,"url":null,"abstract":"<div><div>We study a random polynomial of degree <em>n</em> over the finite field <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>, where the coefficients are independent and identically distributed and uniformly chosen from the squares in <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span>. Our main result demonstrates that the likelihood of such a polynomial being irreducible approaches <span><math><mn>1</mn><mo>/</mo><mi>n</mi><mo>+</mo><mi>O</mi><mo>(</mo><msup><mrow><mi>q</mi></mrow><mrow><mo>−</mo><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup><mo>)</mo></math></span> as the field size <em>q</em> grows infinitely large. The analysis we employ also applies to polynomials with coefficients selected from other specific sets.</div></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":"109 ","pages":"Article 102714"},"PeriodicalIF":1.2000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Fields and Their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1071579725001443","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We study a random polynomial of degree n over the finite field , where the coefficients are independent and identically distributed and uniformly chosen from the squares in . Our main result demonstrates that the likelihood of such a polynomial being irreducible approaches as the field size q grows infinitely large. The analysis we employ also applies to polynomials with coefficients selected from other specific sets.
期刊介绍:
Finite Fields and Their Applications is a peer-reviewed technical journal publishing papers in finite field theory as well as in applications of finite fields. As a result of applications in a wide variety of areas, finite fields are increasingly important in several areas of mathematics, including linear and abstract algebra, number theory and algebraic geometry, as well as in computer science, statistics, information theory, and engineering.
For cohesion, and because so many applications rely on various theoretical properties of finite fields, it is essential that there be a core of high-quality papers on theoretical aspects. In addition, since much of the vitality of the area comes from computational problems, the journal publishes papers on computational aspects of finite fields as well as on algorithms and complexity of finite field-related methods.
The journal also publishes papers in various applications including, but not limited to, algebraic coding theory, cryptology, combinatorial design theory, pseudorandom number generation, and linear recurring sequences. There are other areas of application to be included, but the important point is that finite fields play a nontrivial role in the theory, application, or algorithm.