{"title":"Autonomous UAV last-mile delivery in urban environments: A survey on deep learning and reinforcement learning solutions","authors":"Jingrui Guo , Yangyang Zhou , Laurent Burlion , Andrey V. Savkin , Chao Huang","doi":"10.1016/j.conengprac.2025.106491","DOIUrl":null,"url":null,"abstract":"<div><div>This survey investigates the convergence of deep learning (DL) and reinforcement learning (RL) for unmanned aerial vehicle (UAV) applications, particularly in autonomous last-mile delivery. The ongoing growth of e-commerce heightens the need for advanced UAV technologies to overcome urban logistics challenges, including navigation and package delivery. DL and RL offer promising methods for object detection, path planning, and decision-making, enhancing delivery efficiency. However, significant challenges persist, particularly regarding scalability, computational constraints, and adaptation to volatile urban settings. Large UAV fleets and intricate city environments exacerbate scalability issues, while limited onboard processing capacity hinders the use of computationally intensive DL and RL models. Moreover, adapting to unpredictable conditions demands robust navigation strategies. This survey emphasizes hybrid approaches that integrate supervised and reinforcement learning or employ transfer learning to adapt pre-trained models. Techniques like model based RL and domain adaptation are highlighted as potential pathways to improve generalizability and bridge the gap between simulation and real-world deployment.</div></div>","PeriodicalId":50615,"journal":{"name":"Control Engineering Practice","volume":"165 ","pages":"Article 106491"},"PeriodicalIF":4.6000,"publicationDate":"2025-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Control Engineering Practice","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0967066125002539","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
This survey investigates the convergence of deep learning (DL) and reinforcement learning (RL) for unmanned aerial vehicle (UAV) applications, particularly in autonomous last-mile delivery. The ongoing growth of e-commerce heightens the need for advanced UAV technologies to overcome urban logistics challenges, including navigation and package delivery. DL and RL offer promising methods for object detection, path planning, and decision-making, enhancing delivery efficiency. However, significant challenges persist, particularly regarding scalability, computational constraints, and adaptation to volatile urban settings. Large UAV fleets and intricate city environments exacerbate scalability issues, while limited onboard processing capacity hinders the use of computationally intensive DL and RL models. Moreover, adapting to unpredictable conditions demands robust navigation strategies. This survey emphasizes hybrid approaches that integrate supervised and reinforcement learning or employ transfer learning to adapt pre-trained models. Techniques like model based RL and domain adaptation are highlighted as potential pathways to improve generalizability and bridge the gap between simulation and real-world deployment.
期刊介绍:
Control Engineering Practice strives to meet the needs of industrial practitioners and industrially related academics and researchers. It publishes papers which illustrate the direct application of control theory and its supporting tools in all possible areas of automation. As a result, the journal only contains papers which can be considered to have made significant contributions to the application of advanced control techniques. It is normally expected that practical results should be included, but where simulation only studies are available, it is necessary to demonstrate that the simulation model is representative of a genuine application. Strictly theoretical papers will find a more appropriate home in Control Engineering Practice''s sister publication, Automatica. It is also expected that papers are innovative with respect to the state of the art and are sufficiently detailed for a reader to be able to duplicate the main results of the paper (supplementary material, including datasets, tables, code and any relevant interactive material can be made available and downloaded from the website). The benefits of the presented methods must be made very clear and the new techniques must be compared and contrasted with results obtained using existing methods. Moreover, a thorough analysis of failures that may happen in the design process and implementation can also be part of the paper.
The scope of Control Engineering Practice matches the activities of IFAC.
Papers demonstrating the contribution of automation and control in improving the performance, quality, productivity, sustainability, resource and energy efficiency, and the manageability of systems and processes for the benefit of mankind and are relevant to industrial practitioners are most welcome.