{"title":"Displacement analysis for energy pile foundations under thermomechanical loads","authors":"Jincheng Fang , Shijin Feng , Yong Zhao , Hongxin Chen","doi":"10.1016/j.gete.2025.100725","DOIUrl":null,"url":null,"abstract":"<div><div>Energy piles present an innovative energy-saving technology that can fulfill two critical building needs of structural support and energy supply. In practice, developing simple but efficient methods to predict the thermomechanical response of energy pile foundations is essential for geotechnical engineers. In this study, a practical method was proposed for the thermomechanical analyses of energy pile foundations. The proposed method could effectively describe the interactions between the grouped energy piles, the surrounding soil, and the stiff soil strata underlying the pile tip. Based on this method, parametric analyses were performed to evaluate the effects of several aspects, including the foundation geometries and ground properties, on the pile displacement behavior and the pile-to-pile interaction. Further, the proposed method was used for the displacement analysis for a square pile group containing sixteen energy piles under thermomechanical loads. Comparisons with results obtained through the experimental investigations and finite-element methods prove that the proposed method is capable of capturing the displacement response of energy pile foundations with reasonable accuracy. The aim of this study is to offer a practical method and a reliable reference to geotechnical engineers during the design of energy pile foundations.</div></div>","PeriodicalId":56008,"journal":{"name":"Geomechanics for Energy and the Environment","volume":"43 ","pages":"Article 100725"},"PeriodicalIF":3.7000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomechanics for Energy and the Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352380825000905","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Energy piles present an innovative energy-saving technology that can fulfill two critical building needs of structural support and energy supply. In practice, developing simple but efficient methods to predict the thermomechanical response of energy pile foundations is essential for geotechnical engineers. In this study, a practical method was proposed for the thermomechanical analyses of energy pile foundations. The proposed method could effectively describe the interactions between the grouped energy piles, the surrounding soil, and the stiff soil strata underlying the pile tip. Based on this method, parametric analyses were performed to evaluate the effects of several aspects, including the foundation geometries and ground properties, on the pile displacement behavior and the pile-to-pile interaction. Further, the proposed method was used for the displacement analysis for a square pile group containing sixteen energy piles under thermomechanical loads. Comparisons with results obtained through the experimental investigations and finite-element methods prove that the proposed method is capable of capturing the displacement response of energy pile foundations with reasonable accuracy. The aim of this study is to offer a practical method and a reliable reference to geotechnical engineers during the design of energy pile foundations.
期刊介绍:
The aim of the Journal is to publish research results of the highest quality and of lasting importance on the subject of geomechanics, with the focus on applications to geological energy production and storage, and the interaction of soils and rocks with the natural and engineered environment. Special attention is given to concepts and developments of new energy geotechnologies that comprise intrinsic mechanisms protecting the environment against a potential engineering induced damage, hence warranting sustainable usage of energy resources.
The scope of the journal is broad, including fundamental concepts in geomechanics and mechanics of porous media, the experiments and analysis of novel phenomena and applications. Of special interest are issues resulting from coupling of particular physics, chemistry and biology of external forcings, as well as of pore fluid/gas and minerals to the solid mechanics of the medium skeleton and pore fluid mechanics. The multi-scale and inter-scale interactions between the phenomena and the behavior representations are also of particular interest. Contributions to general theoretical approach to these issues, but of potential reference to geomechanics in its context of energy and the environment are also most welcome.