Anping Wan , Shuai Peng , Khalil AL-Bukhaiti , Yunsong Ji , Shidong Ma
{"title":"The early warning method for offshore wind turbine gearbox oil temperature based on FSTAE-ATT","authors":"Anping Wan , Shuai Peng , Khalil AL-Bukhaiti , Yunsong Ji , Shidong Ma","doi":"10.1016/j.suscom.2025.101180","DOIUrl":null,"url":null,"abstract":"<div><div>Offshore wind turbine gearboxes often experience malfunctions due to harsh environmental conditions, resulting in significant downtime and financial losses. This study presents an innovative early warning system for monitoring gearbox oil temperature using a novel FSTAE-ATT model. The system leverages SCADA data and employs Feature Mode Decomposition (FMD) to enhance feature extraction from gearbox oil temperature measurements. The FSTAE-ATT model integrates Convolutional Neural Networks (CNN) for spatial feature extraction and Long Short-Term Memory (LSTM) networks for temporal dependencies, augmented by a self-attention mechanism to highlight critical features. The model's reconstruction error serves as an early warning indicator for gearbox oil temperature anomalies. The effectiveness of the FSTAE-ATT model was validated using real-world data from an offshore wind farm in Yangjiang, Guangdong, China. Comparative analysis with other models, including STAE, STAE-ATT, AE, TAE, and SAE, demonstrated that the FSTAE-ATT model outperforms them with lower RMSE (e.g., 0.003452 for unit #40) and MAE (e.g., 0.002828 for unit #40) metrics. Additionally, significantly earlier warning times (e.g., up to 22 h and 36 min for unit #40), provide substantial lead time for preventative maintenance. This work contributes to advancing offshore wind turbine condition monitoring and fault detection, enhancing the sustainability and profitability of offshore wind energy systems.</div></div>","PeriodicalId":48686,"journal":{"name":"Sustainable Computing-Informatics & Systems","volume":"47 ","pages":"Article 101180"},"PeriodicalIF":5.7000,"publicationDate":"2025-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Computing-Informatics & Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210537925001015","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Offshore wind turbine gearboxes often experience malfunctions due to harsh environmental conditions, resulting in significant downtime and financial losses. This study presents an innovative early warning system for monitoring gearbox oil temperature using a novel FSTAE-ATT model. The system leverages SCADA data and employs Feature Mode Decomposition (FMD) to enhance feature extraction from gearbox oil temperature measurements. The FSTAE-ATT model integrates Convolutional Neural Networks (CNN) for spatial feature extraction and Long Short-Term Memory (LSTM) networks for temporal dependencies, augmented by a self-attention mechanism to highlight critical features. The model's reconstruction error serves as an early warning indicator for gearbox oil temperature anomalies. The effectiveness of the FSTAE-ATT model was validated using real-world data from an offshore wind farm in Yangjiang, Guangdong, China. Comparative analysis with other models, including STAE, STAE-ATT, AE, TAE, and SAE, demonstrated that the FSTAE-ATT model outperforms them with lower RMSE (e.g., 0.003452 for unit #40) and MAE (e.g., 0.002828 for unit #40) metrics. Additionally, significantly earlier warning times (e.g., up to 22 h and 36 min for unit #40), provide substantial lead time for preventative maintenance. This work contributes to advancing offshore wind turbine condition monitoring and fault detection, enhancing the sustainability and profitability of offshore wind energy systems.
期刊介绍:
Sustainable computing is a rapidly expanding research area spanning the fields of computer science and engineering, electrical engineering as well as other engineering disciplines. The aim of Sustainable Computing: Informatics and Systems (SUSCOM) is to publish the myriad research findings related to energy-aware and thermal-aware management of computing resource. Equally important is a spectrum of related research issues such as applications of computing that can have ecological and societal impacts. SUSCOM publishes original and timely research papers and survey articles in current areas of power, energy, temperature, and environment related research areas of current importance to readers. SUSCOM has an editorial board comprising prominent researchers from around the world and selects competitively evaluated peer-reviewed papers.