Immersed finite element methods for linear and quasi-linear elliptic interface problems

IF 2.5 2区 数学 Q1 MATHEMATICS, APPLIED
Slimane Adjerid
{"title":"Immersed finite element methods for linear and quasi-linear elliptic interface problems","authors":"Slimane Adjerid","doi":"10.1016/j.camwa.2025.08.001","DOIUrl":null,"url":null,"abstract":"<div><div>We present a framework for constructing immersed finite element (IFE) spaces for second-order elliptic interface problems on interface-independent meshes exhibiting optimal convergence rates of <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>h</mi></mrow><mrow><mi>p</mi><mo>+</mo><mn>1</mn></mrow></msup><mo>)</mo></math></span> in the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> norm and <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>h</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>)</mo></math></span> in the <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> norm using a polynomial degree <em>p</em>. We consider linear problems with variable coefficients as well as quasi-linear problems. We present algorithms to create IFE spaces on elements cut by the interface and algorithms to solve the resulting finite element problems. We also present numerical results to demonstrate the performance of the IFE method for several linear problems with variable coefficients and quasi-linear elliptic interface problems in divergence form.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"197 ","pages":"Pages 19-42"},"PeriodicalIF":2.5000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122125003281","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We present a framework for constructing immersed finite element (IFE) spaces for second-order elliptic interface problems on interface-independent meshes exhibiting optimal convergence rates of O(hp+1) in the L2 norm and O(hp) in the H1 norm using a polynomial degree p. We consider linear problems with variable coefficients as well as quasi-linear problems. We present algorithms to create IFE spaces on elements cut by the interface and algorithms to solve the resulting finite element problems. We also present numerical results to demonstrate the performance of the IFE method for several linear problems with variable coefficients and quasi-linear elliptic interface problems in divergence form.
线性和拟线性椭圆界面问题的浸入有限元方法
我们提出了一个框架,用于在界面无关网格上构造二阶椭圆界面问题的浸入式有限元(IFE)空间,该空间在L2范数上具有O(hp+1)的最优收敛速率,在H1范数上具有O(hp)的最优收敛速率。我们考虑了具有变系数的线性问题以及拟线性问题。我们提出了在被界面切割的元素上创建IFE空间的算法和解决由此产生的有限元问题的算法。数值结果证明了该方法在若干变系数线性问题和发散形式的拟线性椭圆界面问题上的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信